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PREFACE

The subjects discussed in this review cover Guidance,
Control, Unsteady Aerodynamics, Structural Dy-
namics, Orbit Theory and Prediction, and selected
topics concerning Astrophysics. Other subjects such
as Aerothermodynamics and Flight Evaluation will be
discussed in forthcoming reviews. It is hoped that
these reviews will be interesting and helpful to other
organizations engaged in space flight research and
related efforts. Criticisms of this review and discus-
sions concerning individual papers with respective
authors are invited.

/,//2;//, 1//(/

E. D. Geissler
Director, Aero-Astrodynamics Laboratory
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. STUDIES IN MINIMAX CONTROL

Kenneth J. Davis

Ne5-2k126 .

. SUMMARY

This report presents anew formulation of a mini-
max problem inlaunchbooster control, and a summary
of work done by contractors on the problem. The
minimax problem described in the introduction is a
mathematical one whose solution would yield acontrol-
ler which would minimize the maximum possible value
of some selected analytical index of booster perfor-
mance. The work summarized was completed before
June 1, 1964, and includes studies by Honeywell (Con-
tract NASw-563) and Control Research Associates
(CRA, Contract NAS8-11143). Honeywell's study re-
sults in alinear fixed gain controller which minimizes
a given criterionunder a worst-disturbance condition.
CRA has developed a general theory of minimax ele-
ments, and has defined a problem whose solution would
yield a closed loop controller. '

LIST OF SYMBOLS

Symbol Definition

X n-dimensional state vector

A Constant nxn matrix

B, C Constant n-dimensional vectors

u = u(x) Scalar control law

g = g(t) " Scalar disturbance function

Q Class of control laws u(x)

¥ Class of proper control laws

U Range of control law u(x)

r Class of disturbance funéﬁ?;)ns g(t)
T Terminal time

u Angle of attack

@ Angular deviation from reference
Z Lateral deviation (drift) from reference
N

Set of controllable initial states

[
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David A. Ford

T o "«»\.W
Symbol Definition
B Engine swivel angle
o, Angle of attack due to wind
EP n—diménsional Euclidean space
F(x) performance index
C(u) "Cost" functional
l.u.b Least upper bound
g.l.b Greatest lower bound
xeX X is a member of the set X
L. u. b. g(x) Least upper bound of the values g(x)
x eX of the function g for x belonging to the

set X.

I. INTRODUCTION

This reportrecords results thus far on a minimax

problem related to launch booster control. The mo®”
vation for the problem is the reduction of peak va''®s
of some selected index of vehicle performance, vhile
at the same time maintaining other vehicle perf°r ™"~
ance characteristics within prescribed bounds.

In sectiontwo of this report, a maf:hematical for-
mulation of the minimax problem is given. Thi’ p.rob—
lem statement involves a linear plant, with * time-
varying disturbance entering as a forcing tern' The
bounds on performance characteristics are irc?rp(?-
rated as state variable constraints. The objec’t,we_ 18
the determination of a control law whichwill mi" - mPize
the maximum value of a given (nonintegral) pef orm-
ance index. The maximum is taken relative’_ to a
particular set of initial conditions and a partm,ul_ar
class of disturbances, as well as over a given fini
time interval. .

Since this type of problem differs from the usual
variational problems, and does not yield readily to
standard techniques, the statement is given in term°
which emphasize the qualitative aspects of the problem.

Raier TU Sy
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Wh1le the ultimate goal is the development of effective
procedures for computing the optimal control, the
immediate goal is to obtain mathematical insight into
the nature of the problem. Consequently, the problem
is stated in general mathematical terms so that it may
be amenable to rigorous mathematical treatment.

Section three is a summary of work done under
contract by Honeywell, Inc.
a general linear plant with a linear controller and a
bounded disturbance is considered. Honeywell imposes
zero initial conditions and no intermediate or terminal
conditions. A linear performance index is treated,
and a procedure is developed for finding the maximum
value of this cost index for a given linear controller.
In addition, Honeywell applied their technique to two
second-order and one fourth-order (rigid launch ve-
hicle) example.

The results obtained by Control Research Associ-
ates (CRA) are summarized in section four. In con-
trast to the M-H approach, their efforts have been
directed toward the more qualitative aspects of the
problem. In particular, they have made a study of the
general theory of minimax elements. Their most sig-
nificant contribution has been in the formulation of a
meaningful mathematical statement of the problem.

II. THE PROBLEM STATEMENT

The terms in which the problem will be stated are
as follows. The unforced booster dynamics are repre-
sented by a homogeneous linear vector matrix differ-
ential equation

(2. 1)

ight will be thougat of as being made up of a
ve of shorter processes, each T seconds in
length, where the time interval 0 = t = Tis sufficiently
small to\ allow the coefficients in the matrix A to be
considered constant throughout the interval. The con-
troller ertersthe system as a scalar u. A scalar g is
introduced into the system to represent wind effects in
the booster, where mathematically g = g(t) is re-
stricted t.]'o a suitable class of functions I'. With these
additions, the system (2.1) is rewritten as
i
x=Ax+Bu+Cg, (2.2)

where Band C are constant n-vectors.
{
To larify the terminology used above, the rigid
body bosster dynamics will be transfor med to the form
(2.2). The standard rigid body equations of motion

In this study the case of

can be written as -

. . . i
a=¢+aw-V(K1¢+K2a+K3B)

$=-Cia-Cyp

B=K(B+B)-

(The first equation is the resultof combining Q- by
¢ -Z/Vand Z = Kjp + Kya + KzB).  This system is
transformed into the !'state variable" form (2. 2) by
lettmw Xy = ¢, X9 = ¢, X3 = &, x4 =8, u=fcand

g = aw. In vector matrix notation the rigid body
equations become
) o 1 0 0)/x ) (o)} [o
Xz 0 0 _Ci ‘Cz X9 0 0
+| |u+t| |g
X - El 1 - Ez— - E& X 0 i )
3 v v v ||

Generally, at MSFC the linear contr ol law is
u=Bc—a0¢)+al<p+boa oru =k Xy + ky X + k3 X3 and
g = @y, corresponds to the MSFC design winds (Cape
Kennedy). Here, however, the control u is not re-
stricted to be a linear control law; indeed, it may be
of nonlinear form such as the optimal bang-bang con-
trol law. The control u may depend explicitly on time
t or the state vector x. Preferably, however, the
control takes the form u(x) of a feedback control law.
The range of u is restricted to a bounded set U, and
the class of admissible controllers for the problem is
denoted by Q. In some studies concerning the rigid
body problem mentioned above, the class of controls
might be the set of all linear controls.

To assure adequate booster performence, the
state vector x is constrained to lie in a region R in
EDR. The characteristics of the region R depend upon
the particular system under investigation. For ex-
ample, it may be necessary to restrict linear combi-
nations of the state variables x so that desirable
booster performance can be obtained. These combi-
nations can be written as the dot productl * X, and
the restrictions can be represented by inequalities in
the following general form:

Ill-xlsLi, i=1,2, ..., r (2.3)
where the Lj are positive constants. To illustrate this
formulation, consider the booster rigid-body example
and the restrictionof maintaining the bending moments

on the booster within the structural design limits.




This can be written in the form (2.3) by

|28 xg+ 1) = |= Ly,
where £} = My, £] = Mp, and L is the structural de-
sign limit for the bending moments. These restric-
tions, along with others imposed by the physical
situation such as limit on engine deflection angle 3 and
perhaps a limit on attitude angle ¢, determine the
region R.

Continuing with the general formulation of the
problem, it is assumed that a set X° of initial states
exists having the property that there 1s a control u in
Q such that for each initial state x%¢ x° 3 and each
disturbance g ¢ T, the solution x(t; u, g, x°) to equa-
tion (2) (which is initially x(0; u, g, x®) =x°) re-
mains in R throughout the time interval 0=t =T,
The set X° is called the set of controllable initial
states. To state this in terms of the booster rigid
body system, consider the initial states for the state
variables ¢, (i), @, 8 for any interval of flight time
(e.g., 60-70 sec.). The initial states are such that,
for any wind the vehicle encounters, there exists a
control u which will maintain the state variables so as
to satisfy all restrictions imposed on them.

Once a controllable set X° is given, it is neces-
sary to consider, within the set  of allowable con~
trols, only those which control the vehicle from each
initial state in X°, and for each disturbance g ¢ T.
Let ¥ denote this subset of @ defined mathematically
as follows: u e ¥ if for each x© ¢ X°, and each ge T,
X(t; u, g, xo) remains in R for 0 =t = T. The mem-
bers of ¥ will be called proper controls.

A second condition on x, and on the initial region
X°, stems from the fact that the terminal state
x(T; u, g, x°) is an initial state for the controller in
the next time period. Thus, it is required that
x(T; u, g, x°) belong to the set of controllable initial
states for the succeeding time period. This amounts
to placing terminal conditions on the problem. (The
requirement for the terminal conditions on the problem
is a result of the approach to the formulation of the
problem. The choice was either to consider the prob-
lem from a time-varying standpoint or to use a con-
stant parameter (time-invariant) formulation. The
latter approach was chosen because of the apparent
simplicity in the formulation and traotability of the
problem). Since the problem is formulated for the
constant coefficient case, the flight region must be
broken up into segments in which the parameters are
almost constant. It is therefore understandable that
the controllable initial states for one segment must be
the terminal conditions for the preceding segment.

[N

A minimax problem is now formu‘ated in thks set— -

ting. A non-negative functional
F (Xl, X9y .0y Xn) =F (X)

is introduced as an index of performance. The "cost"
for a given control u is then defined by

C (u) = max max max
gel xX°eX0 t=0=T

F(x(t; u, g, x%)).
(2.4)

The expression C (u) is a general mathematical
representation of a peak valueof some vehicle param-
eter. For example, C (u) could be taken as the peak
bending moment under a worst-case wind, for a worst
initial condition. Since the object of the minimax con-
trotler is the reduction of this peak, the minimax
problem is that of finding a controller w* such that

C (u*) = Umeinﬂ C (u).

The controller w* would therefore guarantee the peak
bending moment to be the smallest value found, within
limitations, for any control u which could be con-
sidered. The choice of a functional F would generally
depend on the constraints placed on x. For example,

F(x) = maxlli- x|,
I<i=r

where the £' are the constant vectors of expregsion_’

(2.3). Another possibility would be /

. -/
F= [ x]

i=1 K4
{
[4
L4
which would minimize an "average' worst casg,
f

The problem will now be summarizec{‘ For a

particular time interval of length T, the inOthl’l is
described by the system

x =Ax+Bu+Cg.

»
For this time interval, we seek a controller w ¢ g
such that

out the flight tlrne for all disturbances g ¢ It and all -

(1) u* forcesthe system to remain in R khrough_

initial states x° ¢ XO

-

e e
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. ) ('2)~ea‘ch of the possible terminal states for the
time interval under consideration is a controllable
initial state for the next time period,

(3) w* minimizes the maximum value of a given
function F (x)-

The desired controller for the entire flight time will
be the combination of the controllers for the particular
intervals.

. II. HONEYWELL'S STUDY

Honeywell considers the minimax problem for the
case of a linear feedback control, zero initial condi-
tions, no state variable constraints, and bounded dis-
turbance. It is shown that, for a given fixed-gain
linear control law, the "worst" disturbance, that is,
the one which maximizes the peak value of a given
(linear) performance index is bang-bang. The per-
formance index chosen has the form

F(x)= l2-x],

where £ is a constant n-vector. Honeywell develops
aprocedure for determining the worst disturbance and
for computing the cost incurred under this disturbance.
They then find the minimura cost by using an iteration

- procedure. They also present. examples to illustrate
\ their techniques. The remainder of this section is
- devoted to summarizing their work.

The class of controis Q consists of fixed gain
linear control laws in the form

(3. 1)

where ‘some restriction, such as

n

2
Z ki k1,

i=1

is placedon the gain coefficients k;. The subclass ¥

of proper controls is all of Q in this case, since
- " neither Cf\nstraints nor terminal conditions are pres-
ent. The dass of disturbances T consists of all meas~-
urable furctions g restricted by |g]= 1. Only. the case
of zero irtial conditions x® = 0, is treated. (Honey-
( well has tfeported recently that the mathematical dif-
ficulties rhichimposed the zero initial condition have
been o,ve"come. )

Sinc the control u depends only onthe state vari-
] able, X,;ubstitution of a given control law in equation
: (2. 2) 2sults in a right-hand side which depends only

—w T o T T T T e T T

< -
on x and g. Considering g as the control, the prob-
lem of maximizing a performance index isanoptimal
control problem. This modified system has the form

. A

x=Ax+Cg (3.2)
where

A

A=A+BkT

and kT denotes the transpose of the nxi matrix (vec-
tor) whose components are the gains kg, ky,..., k,
of (3.1).

The performance index whose maximum value is
to be minimized is represented in the form

F (x) = 12 - x].

In accordance with the terminology of section 2, the
cost for a given control u is given by

C (u) - max max I! * X (t, u(X), 2 O)I (3' 3)

gel' 0st=T

or more simply,

C (u) = max max II X (t u, g)l. (3.4)

gel 0st=T

In the report, two useful simplifications of the
expression for C (u) are made possible because of the
restrictions on x° and on g. Since only zero initial
conditions are considered, itis found that no generality
is lost in assuming that max ll © x(t; u, g)| always

0=t=T
occurs at the final time T. 'Furthermore, since g (t)
is confined to a symmetric region, it is sufficient to
consider the case where £ - x (t; u, g) is non-nega-
tive, and consequently, the absolute values in (3. 4)
may be dropped. Therefore,

C (u) = max [£ - x (T;u, g)], (3.5)
gel

which is the final expression for the ."cost. "

The main contribution of Honeywell is in the de-
termination of a "worst' disturbance g, that is, one
which satisfies

C(u=1L"-x(T;u, g. (3. 6)

The central idea, as suggested above, is that of
letting the disturbance g in equation (3.2) take the
role of a control, and applying the theory of time-
optimal control to yield a bang-bang 'controller" g
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. which maximizes the performance index
1 x(T;u, 8

of (3.6).

The solution of this problem leads to the con-
struction of g in the following form. Lety (t) denote
the solution to the system

y-Ay (3.7)

with terminal condition

y(T) = L.

Then, in terms of this solution,

g (t) =sgn[y (t) - C]

is the desired "worst'" disturbance.

In review, it should be pointed out that the above
results apply to the zero initial condition case.

In some cases the cost C (u) is expressible ex~
plicitly interms of the gains ki, kg ..., Ky, In which
case one may attempt to find the control u(x‘ which
minimizes C (u) by analytical techniques. In their
report, Honeywell develops such a procedure for the
plants x =u + g and X+ x = u+g, where the terminal
time T is taken at + o,

A more usual situation is that the cost is not ob-
tainable explicitly in terms of the gains, but rather a
selection of apparently suitable control laws is made,
and the cost computed for each. The selected control
law yielding the least cost is then chosen as the opti-
mum control law. This approach is used by Honey-

well in the example discussed in the following para-
graphs.

This example was chosen by the contractor to
illustrate the developed techniques for a more or less
realistic approximation to the problem of rigid body
control of a typical launch vehicle. The conventional
rigid body equations of motion were used in conjunc-
tion with a control law having fixed gains in the pitch
rate feedback loop and inthe ptich attitude and normal
acceleration filtered feedback loops. The rigid body

¢quations of motion were written in the form of (2),
with state variables

Xp 29, Xp= ¢, x3=Z, x4 = B.
Cost indices of the form

C; (W) = max ro(x (Tsu, g),i=1, 2,3, 4
g

LR

Y oo Voo
L 5 -
L)

were considered where the weighting factors 1, \\(.lL
chosento permit comparison of the peak valueb of the
state variables. For each control u, the largest of
the values C; (u) was taken as the cost C (u). Tic
cost was computed for an initial choice of gains, and
an iterative procedure for improving the choice was
implemented which subsequently reduced the initial
cost by 25 percent. The closed loop roots of the opti-
mally controlled system were -. 0047, -. 44, and -. 137
+j (1.126). The computer time involved was approxi-
mately two hours on Honeywell's H-800 digital com~
puter. Transient responses for the extremal distur-
bances producing the minimum of the C; (u) are given
in Figures 3 through 6.

- IV. CRA'S WORK

This section summarizes work done by CRA on
the minimax problem during February, March, and
April, 1964. The initial interest of the contractors has
been in the mathematical theory upon which the prob-
lem is based. Accordingly, the earlier reports con-
taina survey of minimaxelements in general. Included
in this is a discussion of topological results which are
associated with the problem. At this point, the most
significant contribution of CRA has been the matie-
matical formulation of the problem. The formulation
conceived is a considerable improvement over earlier
statements of the problem.

Some of the general theory presented follows.
LetX and Y be spaces and let F be amapping of X x Y
into aboundad set S of the real numbers. The authors
present a proof of the known result

g.Lb. [Lub. F(xy)] = f
yeY xeX . (4'/1)
l.u.b. [g-1.b. F (%, y)] - {/
xeX yeY

Briefly, this says that the minimaxis at least as large
as the max-min. It is also pointed out that, under the
above nonrestrictive conditions, it is posmble to ob-
tain a very good approximation of the minimax solu~
tion. In particular, it is proved that, if ¢ is any
positive number, then there exists a point (Xo’ Vo) in

X x Y such that i

{
F (XvY)} < €, ‘

L
To see the significance of this result, we note, that, in
the case where the minimax exists, we have

l.u.b.
XxeX

lF(x,y)—glb (4.2)

yeY

l.u.b. F(x,y) =min max F (%, y). \
xeX yeY xeX y

g. L. b.
yeY

-

-



Fhts, this'theorem sdys that, even if the minimax
does not exist, we are assured of an approximation of
the desired value to within any specified degree of
accuracy.

By placing restrictions onthe spaces X and Y and
on the function F, a more precise theorem is proved
concerning the existence of a minimax solution.

Theorem. If each of X and Y is a sequentially
compact metric space and F is a continuous real
valued function defined on X x Y, then there exists a
point (x°, y©)eX x Y such that

F (x%, y°) =min max F (x, y).
xeX yeY

This theorem is actually proved as a corollary to a
more general theorem involving semicontinuity and
general topological spaces.

Turning to the minimax problem in control theory,
the contractors considered the system

x=f(x, u, g, (4.3)
where f is an n-vector function and x, u and g are as

given in section II, The region R is assumed to be of
the form ||x|] =r

where

FIGURE 1. ILLUSTRATION OF T-TAME

R e T T
.

¢ The contractors introduced two new concepls
which are defined below.

_Definition 1. The system (4.3) is said to be T-
tame with respect to R if there exists a subrcgi—;n
RTCR such that, for any x°¢ Ry and any g € T, therc
exists a control u ¢ Q such that x(t; u, g, x®)¢ R for
all t such that 0 = t = T (Fig. 1).

The system indicated in Figure 1 is t;-tame but
it is not ty-tame or tz-tame. A typical trajectory is
shown in Figure 1.

Definition 2. The system (4. 3) is said to be uni-
formly T-tame with respect to R if there exists a
subregion RTCR and a nonvacuous subclass ¥ of Q
such that x(t; u, g, x°)eR whenever x° ¢ RT, g ¢ T,
ue¥andte[0, T]. The idea of T-tameness seems
to be of significant importance. When working with a
system which is uniformly T-tame, we are assured
of the existenceof a ""controllable set" of initial states
and at least one controller which will insure adequate
booster performance against all admissible winds.
Without this property, we would be in the undesirable
position of having our controller u (x) depend explic-
itly on the wind.

Example:

The system
Xy = Xg
f(z =utg

with [u] =1, |g] =1, and T = 2 sec, is uniformly T-
tame with respect to the region R, defined by

%1 =2

A
™

|xe] =

Ry may be taken to consist of the strip in R between
the lines x + 2y = 2 and x + 2y = -2. Any initial state
in RT may be controlled for any g (satisfying |g] = 1)
by taking u = - sgn X, (Fig. 2).

A%

=}
e o —»]

FIGURE 2. REGIONS R AND Ry FOR EXAMPLE
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The assumption that our system be uniformly -
tame with respect to R is fundamental in the work of
CRA. These concepts have been useful to the contract
monitors in preparing the new problem statement. In
fact, the RT in the definitions above can be identified
with the X° of the problem statement. Furthermore,
the statement that the system (4.3) is T-tame is
equivalent to the assumption made in the problem
statement that an "adequate' controller does exist.

The last progress report from CRA included a
discussion of the expression "uniformly T-tame.” It
contained an explanation of the significance of the term
and of its relationship to the (nonuniform) T-tameness

CONCLUSIONS

The introduction of this report provides a com-
plete statement of a minimax problem in launch booster
control, Two aspects of this essentially new formu-
lation should be pointed out. First, there is not a
particular index of performance which may be singled
out as the index of performance for the problem. The
second point is that the problem includes terminal
constraints on X.
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FIGURE 3. RESPONSE TO EXTREMAL
DISTURBANCE WHICH MAXIMIZES x,
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The most useful form fo'r'_the co'n'terl'Ier is e
u (x) form. Honeywell's study chooses this type of
controller, and carries their technique through to
computational algorithm. One shortcoming of this
scheme is that the only constraint which they place on
their state variable is the undesirable one of zepe
initial state. Another drawback of Honeywell's pro-
cedure is that, in most cases, the optimum u (x) iy
one of a preselected set of control laws rather than 3
control law derived from the process. That is, the
only thing which they provide is the determination of
the worst-case cost for a given controller. Their ap-
proach has been applied successfully to in-house
studies involving equations for a rigid booster with a
first order actuator lag, where the maximum bending
moment is to be minimized. A report will be written
on this work in the near future.

The work of CRA has centered around obtaining a
sound formulation of the problem. Their work contri-
buted heavily to the essentially new statement of the
problem given in the introduction to this report.
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A BOUNDARY.VALUE FORMULATION FOR SPACE t

VEHICLE GUIDANCE

N65-24127

SUMMARY

Part 1 of this two-part paper presents a discus-
sionof the general notion of guidance of space vehicles,
the purpose of which is to arrive at an understanding
and description of the decision process which is
central to the steering of a space vehicle. In many
cases, the decision process can be embodied in a set
of mathematical functions, called control laws. The
second part of the paper is concerned with the numeri-
cal representation of the control laws. One way in
which this may be accomplished, with the aid of a
digital computer, is by the expansion of the control
laws in Taylor's series about known data. This pro-
cedure is described and explained. A more detailed
treatment of the material of this paper can be found in
References 1 and 2.

“ 1. SPACE VEHICLE GUIDANCE

A. INTRODUCTION

A convenient starting point for a discussion
of fundamentals of space vehicle guidance can be found
in the following list of basic inputs:

(1) Flight Environment

(2) Vehicle Performance Characteristics
(3) Mission

(4) Optimization Criteria.

This introduction consists of considerations of
these four items, which are pertinent to steering a
space vehicle.

By the flight environment is meant the physical
situation in or through which the vehicle is expected
to fly, i.e., its universe. Mathematically, this
amounts to the total extra-vehicular accelerations ex-
perienced by the vehicle during flight. Primary ex-
amples are the gravities of neighboring bodies and, in
many cases, atmospheric drag. For nonatmospheric
flight, it is assumed that in some coordinate system,
the environmental accelerations are known functions
of, at most, the position and velocity coordinates of
the vehicle and, possibly, time. If the vehicle is con-
sidered as a point of variable mass, this is sufficient.
Whenrigid body dynamics are of interest, the situation
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is slightly more involved. For purposes of this treat-
ment, we shall take the former viewpoint.

By vehicle performance characteristics is meant
those parameters pertaining to the vehicle and of sig-
nificance to its motion. In this category are placed
those parameters defining the magnitude and direction
of the vehicular thrust vector. For atmospheric flight
the effects of vanes, rudders, and more generally of
vehicle geometry must be considered. As a special
subclass of parameters in this category, we have the
flight controls. For steering a space vehicle, certain
devices are available for application, within con-
straints, by a pilot or computer, for the purpose of
appropriately influencing the motion of the vehicle.
The instantaneous effects of such devices manifest
themselves as parameters in the differential equations
of motion of the vehicle. These parameters are the
above mentioned flight controls. Typical constraints
encountered are upper and lower bounds on the values
of these parameters as well as the necessity of time -
continuous or piecewise continuous variations.

The third item, the mission, is a problem area
in itself. Generally speaking, the mission is stated
qualitatively. For purposes of space vehicle guidance,
the mission must be stated analytically. The transi-
tion from one to the other generally brings an investi-
gator face to face with many of the classical unsolved
problems of celestial mechanics. However, the mod-
ern computer has made feasible many numerical ap-
proaches hitherto undeveloped. In any case, the mis-
sion is assumed to deter mine a number of mathematical
relationships among the position and velocity coordi-
nates of the vehicle and possible time, the simultaneous
satisfaction of which is both a necessary and sufficient
condition for mission fulfillment. For our discussion,
these relationships, called mission criteria, are as-
sumed known.

In many cases it is advantageous to consider a
stated mission as a member of a family of missions.
As an example, an earth orbit of given eccentricity,
major axis, inclination, etc., can be embedded in a
family of earth orbits of varying eccentricities, major
axes, inclination, etc. Generally, the family is as-
sumed to be defined by certain parameters, called
mission parameters. Each mission of the family dif-
fers from the others by alteration of one or more of
the mission parameters.



“ "Consider now the fourth item, optimization criter-
"ia. It can and does happen that in steering a space
vehicle from a given set of conditions, one encounters
a multiplicity of possible trajectories leading to mis-
sion satisfaction. In suchcircumstances, it is natural
to seek out the best or optimum trajectory. The cri-
teriaby which one decides which trajectory offers the
most desirable solution shall be called optimization
criteria. For our purposes, the optimization criteria
are assumed to be dependent on the considered family
of missions, but not on individual members.

The preceding comments are sufficient to allow a
discussion of the steering decision itself. We shall
see how this decision is related to the four items just
discussed by way of the differential equations of mo-
tion of the vehicle.

B. THE STEERING DECISION AND THE DIF-
FERENTIAL EQUATIONS OF MOTION

If the flight environment and vehicle perform-
ance characteristics are known, then for an assumed
set of values for the flight controls, the instantaneous
differential equations of motion can be written. To
discuss this, we introduce the following notation.

In athree-dimensional Cartesian coordinate sys-
tem, let x, y, and z be the position coordinates of the
vehicle. Let u, v, and w be velocity coordinates:
X=u,y=v, and Z=w. Let m denote the instantan-
eous mass of the vehicle. Let F denote the instantan-
eous magnitude of the vehicular thrust, and let the
direction of this thrust vector be defined by the two
angles ¢ and 6. (The actual convention for measuring
¢ and 0 is not pertinent here.) As usual, t denotes
time and a dot indicates differentiation withrespect to
time.

Using Newton's second law and dividing by m #0,
one can generally obtain expressions of the form

X=u,
y=yv,
Z=w,

u

f(F, ¢, 6, m, x, y, 2, u, v, w, t),
V::g(F’ <P, 0: m, X, y1 Z, U, Vv, W, t)y

w=h(F, ¢, §, m, x, y, z, u, v, w, t).

Other differential equations may or may not ap-
pear, depending on the construction of the vehicle.
For example, some vehicles are of constant thrust,

so that additionally
F=0 - R
m = c, a constant.
When all equations are written, the flight controls,
since they are open for selection, will appear on the

right hand side of the system, but not on the left. By
way of illustration, we consider the constant thrust

vehicle. This has the system

. 3
X=u

Y=V,

Z=w,

il

u

f(F, @, 99 m, X, y, 2, u, v, w, t)’ ?
(1)

v=g(F, ¢, 0, m, X, y, 2, u, v, w, t),
w=h(F, ¢, 0, m, x, Vs Z, U, v, W, t).

F=0,

m=c. ~

Since the thrust is of constant magnitude, the pilot
has available the direction of thrust for steering.
Thus, the flight controls are @ and 0, and these are
the two parameters appearing on the right side of (1)
for which there are no corresponding differential
equations. In this example, the steering decision con-
sists of selecting values at each instant for ¢ and 6.
However, this is not to be done arbitrarily. Consider
that the values of ¢ and ¢ which are most appropriate
will depend on current position, current velocity,
current vehicle performance parameters and current
time, eventual mission satisfaction, and optimization
criteria.

Thus, we canexpect the flight controls ¢ and 6 to
be functions of current state, current performance
parameters, current time, and mission parameters,
defined via the optimization criteria. In the more
general case, the flight controls will be such functions,
called the control laws.

In order to see more explicitly in what way the
control laws are defined, we consider a system of the
form

X1 =81 (Xgy Xgevns Xppe Uts Ugs ety Uy t),
}iz:gz (Xl’ X9y ee ey Xm, Uq, Ugy.e.., uk, t),

(2)
xm:gm(xl, X5 oo vy Xy Ugy Ugyenn, W, t).
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This system is to be thought of as representative ot
the differential equations resulting from application of
Newton's second, laws.” System (1) is thus a special
case of system (2). The steering decision now be-
comes the determination of the quantitiesuy, uy, ..., Uy
as functions of current values of x4, X3,..., X, and t.
The Xy, X3, ..., Xm must be thought of as containing
position and velocity coordinates and whatever else is
appropriate.

The mission criteria are functions of position and
velocity coordinates and time. It will be convenient
to write them as functions of all the variables xy,
Xgy. .+, Xy Thus, the mission criteria are denoted
by

Fj(Xi, Xgyeeesr X Ci, Co,

m® b R

j=1,2,..., s.

The parameters ¢y, Cy, ..., cp represent the mission
parameters.

It is at this point, in many cases, possible to ap-
ply an optimization theory such as the calculus of
variations in order to impose the optimization criteria.
It is beyond the scope of this paper to discuss such a
theory; there is abundant literature on the subject.
What we need are only the end results of the optimi-
zation. Generally, there are three of these. First of
all new variables may be introduced into the problem.
(This is a consequence of the use of Lagrange multi~
pliers.) The variables xj, Xg,..., Xy, t willremain,
but the variables uj, uy,..., ug may be replaced by a
new set containing k or more variables. The uy,...,
u, can be determined once the new variables are
known, and so it is sufficient to work with the new
variables.

Secondly, with the new variables, every variable
is furnished a first order differential equation. Thus,
system (2) is transformed to a system

yi by Yoo Yo 8

3;2 :f2 (yl’ Yoreoes yn:t)

) (3)
B;n "fn (Y15 Yar+ o> yn’t)-

Unlike system (2), the only variable on the right-hand
side of (3) for whichthere does not appear a differen-
tial equation is t. In system (3) we identify the vari-
ables y;, ys ..., Xp,.- The remaining variables
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Ymis---» Yy take the place of uj, uy, ..., ' The =
steering decision now consists of determining’
Ym0 Yy, for given yy,..., Y and t.

Thirdly, the optimization theory furnishes addi-
tional end conditions to be met concurrently with the
mission criteria. The additional end conditions may
involve more variables than the mission criteria; they
generally depend on all the y; and t. We therefore
combine the new end conditions with the missioncri-
teria; instead of depending only onyy,..., ym,t (ab-
stractly), we depend on Ym+1:+--» ¥Yn @8 well. The
result of this is the set of end conditions

Gj(Yb Yoroorsr Ypots Cpy Coyeuy ) =0, (4)

j=1,2,..., n-m+1. The fact that the total number
of end conditions becomes n - m+1 is a result of the
optimization theory.

We are now nearly in a position to define the con-
trol laws. We need only introduce one further nota-
tion. Let the functions

Yi(t’ Ty My Ngsenes M)y 154, 2,000, 10
represent the general solution to (3) in terms of initial
conditions at 7. Thus, for each i,

YJ'.(T’ Ty My e -

and the functions Y5 considered as functions of t,
solve (3) for all initial conditions. Suppose the space
vehicle to be at a certain point of flight. The position,
velocity, time, and performance parameters dictate
the values for 7, 0y, 19, .., Tm- A little reflection
reveals that the steering decision consists of the de-
termination of 1, 44,..., Ny But each selection of
Nm+i>- - +» N yields exactly one solution of (3). The
question becomes, ”Dp there existvalues of ISR
N, yielding a solution of (3) which at a later time t
satisfies (4) ?"' Note that there are n - m+1 conditions
in (4) and there is available, to satisfy these the
selectionof then - m initial conditions, Ny,414,- -
as well as time t of mission fulfillment.

.,nn

In reality, therefore, one substitutes the solution

yi = Yi(t’ Ty M-

<0 ﬂn)§ i= 1: 2"-" n
into (4) and solves the system of n - m+1 equations
for the n - m+1 unknowns NMm+1r- -+ Mo t in terms

of T, M., Mm> C1s+ -+ Cpe




Lét these Solutions be denoted by

nm+r= Br(T’ Niseoes nm, Cisnens cp);
r=1, 2,..., n-m (5)
t:tf(’T, Msev+s Mms Cirenes cp).

The functions in (5) are the control laws and embody
the steering decision.

In general, y; cannot be substituted into (4) and
solution for By and t; cannot be obtained, since the
functions Y; arenot available. However, the functions
in (5) are nevertheless well defined, and can be nu-
merically represented on the basis of the defining
properties of the Y; and the conditions that the By and
tf solve (4). This is the subject of the next part.

II. NUMERICAL PRESENTATION OF THE
CONTROL LAWS

A. INTRODUCTION

We now concern ourselves with arriving at
some numerical representation of the functions
Br(Ts Nypeeves My C15000s € p) and te(T, Myre-+s Tmo
Cisevvs cp). One approach 1s presented here. It is
certainly not the only possible solution and is presented
merely as a possibility.

First of all, we assume that one solution of the
problem is known numerically. That is, [or a partic-
ular set of values
T, n”i‘ e 77::11’ L., c:f),
the corresponding values ny, . ¥ = f.(1*, n oo Thas

1,...,cp), =1, 2, .,nmandt"‘—tf(T st e
Mm? Ciseevs c¥) have been numerically determined.
This might be accomplished by an iteration on a digital
computer. In any case, usmg the initial values, 7,
M senns "m s et reees nn, equations (3) are nu-
merically integrated to yield numerical values for

Yi (t, 7, Nypeees nn);l:i, 2,...,n,

T =t =g*,

This particular solution shall be called a reference

trajectory.

The idea now is to find the (truncated) Taylor's
series for the control laws about the solution
, S,

r:Br(T ,nl,...,nm ,cp);

. cp).

This can be accomplished once numerical values are
known for the partial derivatives of sufficiently high
order of the control laws with respect to thelr argu-
rnents evaluated at the point (7%, 77 o nm,
c1 yeees €YY, For brevity, we shall only show here
how to obtain numerical values of all first partials.
The procedure generalizes readily to higher orders.

“:‘L ) >{‘< E3 S
t tf(T ,ni,...,ﬁm,c

B. THE FUNDAMENTAL IDENTITIES

The entire procedure is based on three funda-
mental identities. These are, first, an identity satis-
fied by the function Y; by virtue of being solutions of
(3), secondly, a second identity satisfied by the func-
tions Yj characterizing the parameters as initial
values, and thirdly, identities satisfied by the control

laws by virtue of solving the end conditions. We now
list these:
BY.
ot f(Yl,...,Yn,t);lzi, 2,...,n (6)
Yi(T’T9 7]1,---’ nn)5n1§i:1, 2,...,11 (7)
and
G.(Yyooos Yoty €4y Cgpenny c) = 0;
f p
(8)
j=1, 2,..., n-m+1
in which
Y(T,05..0, Mm? Clree s cp) :Yi(tf, M eees M
Li= (9)
,81,...,Bn_m),1—1,2,...,n. |
Identity (6) is understood to hold in all of the
arguments t, 7, Mys+++» My Identity (7) holds in all
of the arguments 7, Ny»+++» Ny Identity (8) holds in

the arguments of the control laws; i.e., inT, Mip ooy
T]m, Clryevny Cp

-Under certain conditions, the above identities can
be differentiated an unlimited number of times with
respect to their arguments to yield further identities.
We assume this to be the case; for justification, see
Reference 1. In particular, using the chain rule, (8)
can be differentiated with respect to M k=1, 2,...,
m, tforcl,l—l 2, » p. For 7 we obtain
n oY Bt 8 n-m oY 9B

il we s m ]
o, a" M 121 M O

m+r

+_J_

izo
ot ank




k=1,2,..., m, j=1, 2,..., n-m+l. For fixed k,

we rewrite the above as the system

n-m/ n 8G, oY aB 9G. n  9G, 9Y \ot
5 Y io—a \_x [y i _9) f
gy on

r=1 \g=1 3nk ot q=1 ayq o 8nl«:
n 098G, 9Y
- 1 _49q
0
g=1 ayq e
j=1, 2,..., n-m+l (10)

and view the system as a system of n - m+1 linear
equations in the n - m+1 unknowns

8,3r Btf
8—;1“:1, 2,..., n—m,—a—.
M M
Similar systems can be obtained for differentiation

with respect to T or cy;. We take (10) as exemplary.

Now the arguments in (10) are those of the con-
trol laws; it has already been pointed out that the ex-
pansion is to be made about the point ('r*, n* se ey
s c’i, ..., Cp). We therefore evaluate (10) at
(75, M3 rnens n’i‘n, ..., c’;). Assuming the re-
sultant system to be nonsingular, once the coefficients
of the unknowns

aﬁr ot
—,r=1, 2,..., n-m, and ——
oy oy

are numerically determined, the system can be solved
by standard processes for the desired numerical
values. As similar statements hold for systems ob-
tained by differentiation of (8) with respect to 7 and
¢y, we will present only the details for (10).

C. DETERMINATION OF COEFFICIENTS IN
(10)

To determine the coefficients in (10), we need
numerical values for the quantities (for appropriate
arguments):

oY
—d.g-1,2,...,mk=1, 2,..., n
8nk
ot and oL’ By , jJ=1,2,..., n-m+i,
q
q=1, 2,..., n.

Partials of the Gj can be directly calculated from
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the end conditions. The only problem is the deternii-
nation of

oY oY
—qank , since —qat

is simply given by evaluation of the right side of (3)
at the time of mission satisfaction.

Differentiation of (6) with respect to ny gives

oY n of oY,
ot Bnk =1 8yj Bnk

which is a linear homogenous system in the unknown
partials

oY
5—q; q=1,2,..., n; k=1, 2,..., n.

Mk
Differentiationof (7) yields the initial values for (11)
att =7; in fact

oY .
— =46, , the Kronecker 6.
on jk
k
t=1
of
Also, the functions ay are numerically known along

i

the reference so that (11) can be integrated numeri-
cally from t =7%. Reading off the integrated values
yields the desired results.

As has been pointed out, similar procedures ap-
ply to the determination of,the remaining first order
and higher order partials.
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WALL PRESSURE FLUCTUATIONS AND SKIN VIBRATIONS = I

WITH EMPHASIS ON FREE SHEAR LAYERS AND OSCILLATING SHOCKS

N65-24128

SUMMARY

Ever since the failure of the first Centaur flights,
high frequency skin vibrations have been of much con-
cern. Large wall pressure fluctuations below sepa-
rated flows and oscillating shocks lead to a dangerous
resonance excitation over the entire transonic and
supersonic portion of the flight. A new relation be-
tween pressure and force correlations has been estab-
lished for inhomogeneous turbulence in order to
account correctly for the largest pressure fluctuations
below oscillating separation and reattachment lines.
It shows that the power spectra of the generalized
forces can be found from rigid model tests by a curve
fit of a special pressure cross correlation function.
However, a curve fit of experimental pressure corre-
lations is useful only as long as the statistical error
of a cross correlation estimate is smaller than the
numerical error of the curve fitting procedure. Non-
linear transfer functions and dynamic shifts in pres-
ently available pressure transducers and tape record-
ers are so large that the more refined force estimates,
which consider the spatial structure of the pressure
field, might lead to ambiguous results.

DEFINITION OF SYMBOLS

Geometrical and Panel Paramters: &\
Symbol Definition

a, b edge lengths /
A panel area, ab

X streamwise surface coordinate

y crosswise surface coordinate

Ap wave number in x, y direction

m number of loops in x direction

n number of loops in y direction

h panel thickness

P density of plate material

D flexural rigidity

18
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Symbol Definition

E Young's modulus of elasticity

v Poisson's ratio

v Eigen value of two-dimensional wave
equation

M modal mass

g modal damping ratio

w transverse deflection

q generalized coordinate or loop
deflection

Flow Parameters:

P wall pressure

U velocity

6 geometrical boundary layer thickness

on clean wall

F generalized force

S cross-power spectral density

R cross correlation function

t time

T time delay

b noise bandwidth in radians/sec

w angular frequency, radians/sec

T integration time

H(w) complex frequency response function
@ (W) phase shift angle

N number of data transmitting elements
AR Mean square error of cross corela-

tion estimate




* ' ' DEFINITION OF SYMBOLS (Concluded)

Symbol

Definition
A pertubation
Sub and superscripts
i fixed transducer
2 moved fransducer
m, n, k, 1 summation indices
p pressure
F force
Al plane wave approximation
o natural frequency
C convected turbulence
* Space average for a translated

transducer pair with fixed separa-
tion distances.

- wall pressure approximation with
mode shapes

I. INTRODUCTION

Recent wind tunnel and flight tests indicate that a
large booster will experience wall pressure fluctua-
tions during the transonic and supersonic portion of
the flight, bigger than the jet noise at the launch.
Figure 1 shows some root-meansquare pressures that

BPays = VIB-9)2 ~db

—— - —— Tronsducer D 153-20
Tronsducer L 65-20
————————— Tronsducer L 64-20
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FIGURE 1. ROOT MEAN SQUARE PRESSURE
FLUCTUATIONS DURING SA-4
FLIGHT

were measured during the fourth flight of a Saturn I
vehicle {1]. At the supérsonie Mach number of 1. 6,
the fluctuation level of the transducer D-159-20 is 14
db higher than at launch. Because of the supersonic
flow, an upstream radiation of jet noise is not pos-
sible, and the highest level of . 16q must be induced
by a noise generationprocess. In subsonic free shear
layers the observed pressure fluctuations are below
10 percent of the local dynamic pressure,and in at-
tached boundary layers the RMS values are usually
equal to . 5 percent [2]. Therefore, the area between
the 10 percent and . 5 percent dynamic pressure curves
has been shaded and called "free shear layer noise. "
RMS values below the shaded area are called "attached
boundary layer noise" and those above 10 percent dy-
namic pressure ''shock induced noise.' Apparently
the highest fluctuations canbe explained only by a free
shear layer interacting with an oscillating shock.

The three transducers were located near the
S-1V/S-1 interstage as indicated by Figure 2. Repro-
ducing the flow field from MSFC wind tunnel shadow-
graphs, one sees immediately that the flow above the
transducer cross section is indeed separated. The
high pressure fluctuations of the transducer D-159-20
were picked up shortly downstream of a sharp I-beam
fairing, and an oscillating bow shock might have been
the cause.

D 159-20
L 65-204¢

FIGURE 2. FLOW FIELD REPRODUCED FROM
WIND TUNNEL SHADOWGRAPH

A power-spectral analysis of the three trans-
ducers indicated several peaks which are centered
around a Strouhal number of .2, as shown in Figure
3. These peaks are known from the vortex shedding
behind two-dimensional cylinders, and thus might be
taken as further evidence of a flow separation inter-
acting with an oscillating shock.
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Unfortunately, the high RMS values occur between
frequencies of 120 to 240 cps, whichis inthe range of
fundamental resonance frequencies of individual skin
panels. The flat curves of Figure 1 have shown that
the high RMS values are not limited to a small Mach
number range but do extend over the entire transonic
and supersonic portion of the flight. This has been
substantiated in model tests that were run at Douglas
Aircraft Company [ 3]. Typical "saw-tooth-type' dis-
tributions are shown in Figure 4. They are essentially
independent of Mach number. In flight, the dynamic
pressure for Mach numbers below 3 is appreciable and

FIGURE 4.

ROOT MEAN SQUARE PRESSURE
VERSUS MACH NUMBER - DAC
MODEL TESTS

20
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the corresponding time interval extends over api)roy'(i— '

mately 30 seconds. Severe fluctuations might there-
fore cause adangerous skinexcitationover an extended
period of time, and every effort should be made to
study the intense, high frequency wall pressure fluc-
tuations which are produced by flow separations and
oscillating shocks.

II. AERODYNAMIC EXCITATION AND STRUC-
TURAL RESPONSE

Ames Research center and the Marshall Space
Flight Center are working jointly on a wind tunnel
program whose purpose is to measure wall pressure
fluctuations below free shear layers and oscillating
shocks [4]. These pressures will supply a generalized
force for each generalized coordinate chosen in the
description of the skin vibrationtests. The test will
be performed on individual forward- and backward-
facing interstage areas and local protuberances rather
than on a complete Saturn model. This is necessary
to obtain Reynolds numbers which are already so high
that afurther increase tofull scale will not change the
flow separation and reattachment lines [5,6]. For
complete models, the Reynolds numbers are so low
that the wanted flow separations and shock oscillations
may not occur at all [7].

A local treatment of structural components is
possible for all elements which almost conserve their
vibration energy [8] (kinetic energy plus work of
stresses  13] and pressures). All structural coupling
with the rest of the vehicle has to be small. Such ele-
ments have been defined in terms of '"correlation
boundaries! like stiffness and heavy internal masses
[19]. They could be found in shake tests on the ground
by measuring the acceleration of the skin at different
points simultaneously. A correlation boundary ex-
exists between two accelerometers if their cross cor-
relation is negligibly small.

The simplest treatment of local panels is given
by the classical modal approach [10] which might be
viewed as an attempt.to curve-fit a flashlight image of
the skin deflection with a linear combination of stand-
ing flexural waves. For the rectangular flat plate,
these waves can be guessed easily (see Fig. 5). From
all conceivable flexural waves, the standing ones are
those which are continuously reflected to and fro be-
tween opposite edges of the plate. This can happen
only for waves which run in either x or y direction,
provided that the distance between the edges corre-
sponds to a multiple of the distance between nodal
points. Denoting the number of loops which are
counted in x and y direction by the wave numbers m
and n,, the distance between the nodal points becomes
a/m and b/n; che wave length of the flexural waves is
exactly twice this distance [14].

'



fin, m)= 1,

W NN

. TX . Ty
sin — sin —
a

Mode Shape P, Y

Force F o= {f plx, y, t) ¢, (x, y) dx dy
&, M

Damping Mass M, = {f Ph o 2(x, y) dx dy

Ratio, ¢

4 phob = - w,

V777777777777773 T

Frequency W, =

En?
i2p(T-v2

FIGURE 5. TYPICAL SKIN PANEL
VIBRATING AT THE
FUNDAMENTAL

FREQUENCY

Each running wave has a sinusoidal time history
of deflection and, because of the continuous reflection
at the edges, the distribution in time is converted to
a distribution in space. As a result, one determines
that the flexural waves of a simple supported, flat
plate have a sinusoidal shape.

f
(pmn(x,y) = sin mT sin ‘”—EX (1)

For n, m=1, 2,.... the complete setof stand—
ingwaves is thenused to approximate the skin deflection
W (X,y,t); all other flexural waves are neglected.

wixy,t) =), ), A (D) ¢ (%) (2)
m=1 n=1

The coefficients q,,p, of this curve fit describe -a flash-
light image of the deflection; they are called the
"generalized coordinate' or "responses." Each re-
sponse is due to the excitation of a generalized force

(. dw
F(m,n,t) = _&fp 8q dA

(3)
= &fp(x,y,t) @ on(%Ys) dx dy.

The relation between these excitations and the re-
sponses q can be illustrated by the forced oscillation
of a harmonic oscillator, as shown in Figure 5. The
angular natural frequency of the oscillator is

n® Eh?

2
@lmm) =7 (3 450 \giraty - *

ERRO W

and its mass is given by

M(m,n)=ff ph(pfnndxdy=pabh/4. (5)
A

The inevitable loss of vibration energy is determined
by the oscillation decay of a free vibrating panel. The
ratio between the energy loss and the work of the
bending moments is equal to four times the ratio
¢(m,n) between two consecutive amplitudes of a stand-
fng but decaying flexural wave.

Unfortunately, the wall pressure fluctuations be-
low free shear layers and oscillating shocks are
neither sinusoidal nor periodic. Because they are
samples of a random process, the generalized force
which is their space integral, equation (3), will also
be random. Since we have random forcing functions
for each of the equivalent oscillators, n and m, statis-
tical methods have to be used. -These methods have
already been developed in communication theory. The
asymptotic response to a random force will therefore
be given by comparing the equivalent oscillator to the
electronic element of a data reduction chain. The
generalized acceleration F (m,n, t)/M is treated as an
input signal, and the generalized coordinate 9n(t)
as an output signal.

The statistical description of the input and output
is based on a frequency decomposition which might be
described through the action of an ideal digital filter,
as shown in Figure 6. The phase shift, ¢, across this
ideal filter is zeroand the gain factor is infinite in an
infinitesimal frequency interval around w = w(m,n)

w)

Pt

Fit

Dl Filicr

FIGURE 6. POWER SPECTRAL ANALYSIS OF
DETERMINISTIC AND RANDOM
SIGNALS

such that the area under the frequency response func-
tionis one unit. The individual frequency components,
q(t,w), are the output of such a narrow band digital
filter, they are described statistically by their mean
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square values or ''power spectral densities", Sq(w) =
<q®(t, w)>, respectively.

The harmonic oscillator itself is a linear and
time invariant element; thatis, a pure harmonic output.
The transmission of each frequency component is de-
scribed by the phase shift ¢ across the oscillator and
by the ratio between the output and input amplitudes
which are said to constitute the complex frequency
response function (Fig. 7),

_ deflection amplitude i
" acceleration amplitude

H(w) (6)

1
" w¥(m,n) - w*+2i¢wwm,ny’

The power spectrum of the output is then equal to the
power spectrum of the input times the squared magni-
tude of the frequency response function [ 11}.
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The local treatment of structural components is pos-
sible only if the energy losses, that is, the damping
ratios ¢, are small. In this case, the "power transfer
function" H(w) 2 has two sharp peaks centered around
the frequencies, + w,, the bandwidth of which is given
by

17
b=§f
-00

Sy() = [H(w)| 2

H 2

(W)

Hw dwo=71¢w,. (8)
(wo) o

22

Because the oscillator will accept only the twc" fre-
quency components which are centered at the natural’
frequency wg, the mean square value of the response
becomes

S_(w)
<q*(m,n,t)>=2b [Hw) 2LM2°— (9

T SF(m, n, w(m,n))

B 2 ¢(m,n) w3(m,n)

This excitation response relation splits the prediction
of skin vibrations into a structural part and an aero-
dynamic part. In the first, one would determine the
sizes, natural frequencies, mode shapes and damping
ratios of possible panels in shake tests on the ground.
The aerodynamic part would be to calculate the power
spectrum of the generalized forces Sp(m,n,t) from
measured pressure fluctuations.

The relation between aerodynamic excitation, Sy,
and structural response <q® has been illustrated for
the simplest of all cases, the rectangular flat plate

with simply supported edges [12]. The derivations
and a complete list of assumptions have been prepared
such that they might be verified in future tests.
It turns out that equation 9is valid not only for the flat
plate but for all structural components, the free vi-
bration of which canbe described by orthogonal modes.
A similar relation could be obtained for the general
case, where structural coupling between components
has to be considered [25]. The main difference is
that the modal frequency response function, equation
6, is replaced by an overall transfer function, which
has to be measured on shake tests on the ground.

III. STANDARD FORCE ESTIMATES

In rigid model tests, the problem is to find the
most dangerous generalized forces from measured
wall pressure fluctuations. According to the excita-
tion response relation, equation (9), the mean square
deflection of a single mode is directly proportional to
the power spectral density, Sg, of the corresponding
generalized force taken at the natural frequency of the
mode. Most rigid model tests are therefore aimed at
the measurement of this property.

The power spectrum of the generalized force, Sps
was defined by filtering operations. Writing down the
mathematics of this filtering process[11] we find that
Sp is the Fourier transform

+00
_ 4 ~iwr
SF(m,n,w) = o f RF(m,n,'r)e dr

T ==

(10)



"o of the‘f(‘)rc'e—afut‘ocorréla'tion function

lim +T/2
R_(m,n,7)=T==— f
F T J1s

F(m,n,t) F(m,n,t+r)dt

(11)
=<F(m,n,t) F(m,n,t+7)>.

The wanted relation between forces and pressures is
now obtained by substituting the definition of the gen-
eralized force

F(m,n,t) = [ [p(x,y,t) @ oy (XoY) dx dy (3)
A

into equation (21). Inverting the order of space and
time integration, we obtain an exact, but unwieldy
fourth order integral

RF (m,n,7) =

ff ff<P(X1’Y1,T) P(Xpy2. t47)> ¢ (X1, ¥1)x
A A

@ n (%2> ¥2) dxq dyy dx, dy,. (12)

The first factor of the integrand summarizes all the
information that has to be obtained from rigid model
tests. It is called the 'pressure cross correlation
function, ' .

Rp(xl’YI’XZ’yZ’T) :<p(X1: Y1,t) P(Xz,Y2,t+T)>, (13)

whose measurement is described in Figure 8. Two
transducers, 1 and 2, are located at the points X{;¥1
and x; = X3+ £ ya=yy+n. The signal from trans-
ducer 1 is delayed by the time 7. Both signals are
then multiplied and the wanted pressure cross cor-
relation function is the output from the time averaging
element.

For an accurate integration of equation (12), each
transducer has to be moved independently over the
whole panel surface and the cross correlationrepeated
over and over again for each combination of the two
transducer locations. This is very cumbersome. To
obtain design criteria, the process must be repeated
for eachresonance frequency and for the combinations
of Mach number, Reynolds number, upstream bound-
ary layer thickness, wedge angle and step height. The
transducer output has to be recorded for approximately
30 seconds to obtain statistically reliable time aver-
ages. Evidently, such an approach requires an ex-
cessive amount of data, and it is doubtful that the
direct evaluations of the fourth order integral could
be tried for more than one or two cases.
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FIGURE 8. MEASUREMENT OF THE STANDARD

PRESSURE CROSS CORRE LA TION

The numerical and experimental effort can be
reduced if a conservative estimate of Ry or Sf is ac-
ceptable. The most simple of all estimates is obtained
by replacing the actual pressure field p(x,y,t) with
normal incident pressure waves, the strength of which
corresponds to the maximum pressure fluctuation
p(x,y,t) = ﬁ(t), '""normal wave estimate'. (14)
Substituting equation (14) into equation (12), the
power spectrum of the generalized force becomes

Sk(w): (15)

4ab)2
p

SF(mrn, w) = ((ﬂ,z mn

which is directly proportional to the power spectrum
of the incident pressure wave. As a result, a con-
servative estimate of the aerodynamic excitation can
be obtained by looking at the power spectral density of
all wall pressures which have been measured inside
the edges of a particular panel. For designestimates,
the power spectral density has to be evaluated at the
natural frequencies of the panel. From all transducer
locations, that one must be found which gives the
largest Sp(w(m,n)).

The plane wave estimate neglects completely the
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spatial structure of the pressure field. Several at-
tempts have been made to include spatial characteris-
tics for statistically homogeneous flows. The assump-
tion of homogeneity means that the pressure cross
correlation is invariant against a translation [ 15].

R _= Rp (£ = XX M=Y1~¥a)>

P (16)

""homogeneous turbulence'.

A good summary has been given by Allan Powell [16].
The autocorrelation of the generalized force is, in
first approximation,

_fm _1n
RF(mvn’T) - Sp()k a ’ /J' p ) J(m:n)

(17)

min

m
+ .., + 7\:__ = - = - -
Sp( 2’ M p ) J(-m, -n),

proportional to the wave number components of the
pressure field

+00
1 -i(A &+
Sp()\,u,q-) <o ;fwf Rp(g,n,r)e 1A g #n)dé dn,

(18)
which are centered around the structural wave num-
bers A = = %, TR ﬂ—;l, and some structural weights:

+o

1 . 2
Jimm) = Jf (I{‘f(.ﬂmn(x,y)e‘()"‘”-")dxdyI/’ didu. (19)

The wave number components Sp might be viewed as
influence coefficients which are necessary to curve-
fit the pressure cross correlation Rp with harmonic

spatial waves el(hx +uy>. In a sense, the autocorre-
lation of the generalized force is therefore obtained
by the curvefit of a measured cross correlation func-
tion. In homogenous turbulence the measurement of
Rp requires that only one transducer be moved. The
fourth order integration of equation (12) is then re-
duced to the double integral of equation (18).

Unfortunately, intense noise sources seem to be
connected with inhomogeneous flows. Homogeneous
turbulence represents uniform flows behind grids [15] ,
whereas the main noise sources are associated with
attached [17], [18] and separated (jet) boundary
layers [19], [20]. High shear and homogeneous tur-
bulence are theoretically incompatible.

In supersonic flow additional noise sources must
be expected. The presently conducted wind tunnel
program indicates that flow separation lines (shock)
and reattachment lines are always unstable and lead
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to a very high noise level. In ‘these 're'g.iofxs,, a‘con-
stant convection speed does not exist, ant the assump-"
tion of homogeneity is very questionable.

IV. FORCE APPROXIMATIONS FOR
INHOMOGENEOUS TURBULENCE

The largest pressure fluctuations are expected
for inhomogeneous flows, and a new simplification of
the pressure field is needed which is not restricted to
homogeneous pressure fields. In this paper, it is
proposed to curve-fit a flashlight image of the pres-
sure fields with a set of orthogonal eigen functions:

PILY D) =By, t) = ) ) f (D) ¢ (xy).
m=1 n=1

(20)

Approximations of this kind are very general and
should fit almostall pressure distribution which occur
in flows, except in the vicinity of the edges. In prin-
ciple, any set of orthogonal eigen functions might be
chosen. Using the mode shapes, however, has the
advantage that the coefficients f,,,, are directly pro-
portional to the generalized forces, equation (3). The
mean square deviation between the given pressure, p,
and its approximation P is 2 minimum, if

_ F(m,n,t)
2
Jfy & (xy) dxdy

One could argue that the curve fit of equation (20) is
very impractical since it has to be repeated for each
instant of time and might require a large number of
coefficients. Infact, the individual coefficients should
never be calculated. They are rather the basis of a
statistical procedure where the individual coefficient
is immaterial and only the average over a large num-
ber of curve fits is used. For homogeneous turbulence,
this has been tried by establishing the relation between
the pressure cross correlation and the force auto-
correlation. The forces are then found by curve fit-
ting Rp with complex waves. If we wish to find a
similar relation for inhomogeneous turbulence, this
function should be based on atranslation of both trans-
ducers (Fig. 8) since this is required in the accurate
fourth order integration, equation (12). In view of
these considerations, a ''special pressure cross cor-
relation" R"f, is now introduced which ties the wanted
force correlations to the measurable pressure cross
correlations, Rp,.

£ (t) =

n F(m,n,t). (21)

4
A

The measurement of the special cross correlation
R’E is shown on Figure 9. A pair of pressure trans-
ducers is moved across the panel such that the separa-
tion distances remain fixed. The special cross cor-
relation RB is then nothing but the space average of




hi

' '« thé "standard” dross correlation R,

. b-n a-¢
R* =

+
<p(X,y,t) p(x+f, ytn, t+1)> dx dy.
p

(a-£) (b-n) (22)

y=0 x=0

LY mmonna e

FIGURE 9. THE SPECIAL CROSS CORRE LA TION
FUNCTION R*p

The wanted relation between R and the force corre-
lation is found by establishing the special correlation
for the simplified pressure model

b-n a-¢ —
L ﬁ(xsy,t) p(x+§, Y""n, t+T)>
= dx dy.
J (a-8) (b-m) y

(23)

Substituting equations (20) and (21) and neglecting
the force cross correlation between modes [12], we
find the wanted relation

o0 00 4
Ry (6m7) =) ), Zedo, (6.0) Ry (m,n,7).
m=1 n=1
(24)
The structural weights ¥Pmn are completely determined
by the mode shapes

by (&) =
(25)
a-¢ b-n
4
@ o L ] eanton) e sk, vy axay
00

" () o (3):

For the rectangular flat plate with simply supported
edges, they are shown in Figure 9.

According toequation (24), the wanted, force cor-
relations Ry are the influence coefficients of a curve
fit which approximates measured RT) pressure Cross
correlations with known structural weighting functions
Ymn(&>m). Once again the unknown coefficients are
determined by the method of least squares. The mean
square error between the measured R?); and the ap-
proximated special cross correlation, R5

A’ R¥ :—17?(12* - RY%dn dg =
P Ay P D

ab 0 )
SR Enn -5 Y TR (29
0 m=1n=

0
& 1,2
a S a (i

is required to be a minimum. This will happen when
the partial derivatives 8(A? R’B)/BRF vanish. Writing
this condition of extremum down for all combinations

k,£2=1,2,......... » ©, we obtain an infinite system
of algebraic equations:

>
ORN
O%c‘

(RD - RY) 4, (£,m) dn dg = 0. (27)

In explicit form

ab
1 *
A {,{Rp(é, M, T) 4 (¢/a) @, (n/b) dt dn
4o - (28)
=32, ) Rp(m,n,7) C(m,k) C(n,1).
m=1 n=1

The constants C(m, k) are an abbreviation of the fol-
lowing integral:

ma k ‘'a’ a

1
Cm,k) = [a (Be, &%, (29)
0

The same equation holds for the constants C(n, £) if
n and £ are substituted for m and k.

The right-hand side of equation (28) approaches
zero as 1/n%  The left-hand side of equation (28)
represents a space average of a special correlation
function which is weighted with the functions oy and
@y. For higher values of k and £, these weights ap-
proach cosine functions, the signs change rapidly with
the separation distances ¢ and 7, and the integral goes
to zero. Consequently, one might truncate the system
since all coefficients C(m,k) and C(m,£) with
m,n, #k, ¢ decay rapidly with increasing difference
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between m and k and n and £. The solution of the finite
system of algebraic equations can therefore be ap-
proximated in first order by considering the diagonal
elements only

(0) ab

_ A £
Rp  (&LT) = Ck, k) C(, 1) { {Rpakal dn dg.

(30)

Higher approximations are found most easily by
actually solving the finite system of linear equations,
preferably in an iterative fashion.

The curve fit of the special cross correlation R*
is an attempt to replace the accurate but unwieldy
fourth order integration of equation (12) with something
more practical. As far as the numerical effort is
concerned, the curve fit is indeed simpler since the
fourth order integral is reduced to a system of alge-
braic equations between double integrals. A reduc-
tion of the experimental effort is not so immediately
apparent. The determination of the special correla-
tion function, equation (22), requires moving both
transducers over the entire panel, and nothing more
is required in the exact solution, equation (12). The
great advantage of the special correlation function is
that the number of measurements can be matched
easily to the present statistical theories of turbulence
and to the flow type. If the turbulence is homogeneous,
then the special correlation Rif) and the standard cor-
relation R,, are identical; that is, the position of one
transducer can be fixed. Furthermore,the integral of
equation (22) does not depend on the location or the
size of the integration domain; that is, the rigid model
test is completely independent from all structural
considerations.

In the case of high shear flows, the rapid decay
of the short waves might change with the streamwise
position. The inhomogeneous behavior must be con-
sidered, if the integral scales of turbulence are small
compared to the panel size. However, the turbulent
structure of attached and free shear layers does not
change rapidly and the change of Rp with pair position
x will be smooth. For an almost linear dependence,
the number of pair locations is given by the stream-
wise extent of the largest panels. Two or three pair
locations might already be sufficient. In the cross-
wise direction, the flow is probably still homogeneous,
and no additional pair locations will be needed.

Below separation and reattachment, the inhomo-
geneous behavior of Rp(X,¥) ¢, n,r i8 difficult to pre-
dict. However, in any case, the aerodynamic engineer
could pick a minimum number of pair locations in a
streamwise direction, such that the integral of equa-
tion (22) stays within prescribed error margins (see
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Section VII). There is no reason why the turbulent
fluctuations should be inhomogeneous along the sepa- °
ration and reattachment lines in two-dimensional or
axisymmetric flows. Therefore, panel size and loca-
tion are of no concern in a crosswise direction, and
no additional pair translations will be necessary.

V. QUICK LOOK PROCEDURES

Any statistical program requires a large amount
of data and the determination of generalized forces
from rigid model tests is a particularly bad case. The
success of such a program depends largely upon
whether or not the most dangerous cases can be iso-
lated at an early stage. A "quick look" for large fre-
quency components of the generalized forces should
precede any program which uses the spatial structure
of the pressure field to arrive at 'true' force esti-
mates.

For quick look purposes, it is probably sufficient
toconcentrate on the two limiting cases of broad band
and narrow band excitation, Figure 10. In a broad
band excitation, the integral over Sp(w) will be large.
This integral is given by the autocorrelation at zero
time lag (mean square value) and a probably dangerous
broad band excitation of a single mode could therefore
be detected by looking at mean square values only.

The detection of large narrow band components
is much more laborious. In the derivation of the ex-
citation response relation, equation (9), it was shown
that the structure will accept only very narrow bands,
the width of which is only a few percent of the center
frequency. This means that the quick look should be
performed with equally narrow bandwidth; otherwise,
some dangerous narrow band components might be

Power Spectral Density of Generalized Force S,(k,f,w)
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Narrow Band
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FIGURE 10. DANGEROUS EXCITATIONS OF A

SINGLE MODE



S integrated out. If a larger region of the frequency do-

‘main must be covered, the narrow bandwidth leads to
a very large number of center frequencies, and there-
fore large computation times. The numerical effort
could be reduced considerably by using the autocor-
relation instead of the power spectrum. The two are
related by Fourier transform pairs; it is a general
feature of these operations that the transform is broad
if the transform function is narrow. To be more
specific, a narrow band peak of Sp(w) is present
whenever the autocorrelation does not vanish, but os-
cillates at time lags that are large compared to the
fundamental period of the panel oscillation
To >> 21/w(1,1). Insteadof looking at a large number
of center frequencies, it might be possible to concen-
trate on the autocorrelation at zero time lag and one
selected interval of large time lags.

In view of these considerations, a quick look pro-
cedure is sought which detects arough, quick estimate
of the force autocorrelations Ryp(m,n,7) from meas-
ured wall pressures. Obviously, the reliability of the
force estimate depends very much on the pressure
model which is used. In many cases, the plane wave
approximation, equation (15), is already sufficient. In
this case, a temporal Fourier transform of equation
{15) shows that the wanted autocorrelation of the forces
Ry (m,n,T) is directly proportional to the autocorre-
lation of the pressures Rp (0,0,7). A broad band
excitation is present as soon as the RMS-pressure
(zero lag autocorrelation) is large. A narrow band
excitation might occur as soon as Rf) (0,0,7) shows
a sinusoidal wiggle. If more than one mode isexcited,
the correspondent asymptotic autocorrelation of the
pressures deviates from a simple sinusoidal pattern.
A Fourier decomposition of Rp (0,0,7) will indicate
the time periods whichreceive the largest contribution
of the asymptotic wiggles. A dangerous vibration be-
comes possible as soon as these time periods coincide
with the time periods of standing flexural waves.

Unfortunately, it is not possible to restrict the
"look" for asymptotic R (1) wiggles to those combi-
nations of geometrical ang flow parameters which were
indicated by large rms values since all narrowband
excitations are overlooked where the area under the
narrowband peak of S¢ (m, n, w ) is small compared to
the area under the complete curve (mean square
value) as shown in Figure 10. Both "looks" must

therefore be carried out for all combinations of geo-
metrical and flow parameters.

The flight data of Figures 1 and 3 already indicate
that the plane wave approximation might give a large
number of ''dangerous'" Mach numbers. One might
want to further reduce the number of geometrical and
flow parameters which have to be considered in the

final analysis. For this purpose, the pressure model
must retain the spatial structure. The model of
homogeneous turbulence implies that the power spec-
tral density analysis must be repeated for the spatial
wave numbers or frequencies A and u, equations (17)
and (18). Again the "quick look" could be based on
the general feature of Fourier transforms which has
been discussed above. It seems sufficient to measure
R’i’; (&£,7m,7) for selected large separations only. The
zero lag case has been treated in the plane wave ap-
proximation. A dangerous excitation is then detected
as soon as the asymptotic pressure correlation R
(&:m) 7., Wiggles at large separation distances sucﬁ
that the distance between zero crossings coincides
with the "space periods" a/m and b/n.

The "quick look" becomes very powerful, if the
pressure fluctuations are due to a convected pattern
of steady decaying turbulence [ 16] which has been ob-
served in attached- [17] [18], separated-[19], and
jet-boundary layers [20]. In these cases, the pres-
sure time history at one point resembles the flash
light image of the pressures taken along the upstream
portion of the streamline (n = 0). Therefore, a nar-
row band component of the pressure power spectrum,
which is centered around the angular frequency,
w = 27T/To, indicates a spatial cross correlation func-
tion, R:f)(g,n,r) , whichhas the space period A=Ug 7 .
Thus, the spatial and temporal wave numbers are no
longer independent and the criterion for large excita-
tions may be reduced to one single condition,

Uc:%’k’“i’zﬂ (31)

for the convection speed U of the pressure fluctuations.

To check whether or not the measured wall pres-
sure fluctuations are due to convected turbulence, one
needs only twotransducers which are separated along
the streamline n = 0 as indicated in Figure 11. A con-
vectionis present as soon as the temporal cross cor-
relation between the two transducers is comparable to
the displaced autocorrelation of the upstream trans-
ducer. A 'resemblance' exists as soon as the cross
correlation function has a distinet maximum and an
average convection speed Ug [21] might be based on
the time delay, Tm» at which the maximum occurs

U =—£‘—.

c T
m

(32)

In the quick look,one is concerned with the convection
speedover large separation distances which are com-
parable to the largest edge lengths, a, b. The domi-
nant nondecayed portion of R}J (¢,7m,7) would be statis-
tically homogeneous if this convection speed is constant
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across the panel. However, for homogeneous turbu-
lence, the special cross correlation, Rp, is reduced

Approximation
m (2}
R} (6,9,7) = é<p| (1)p2 (1+r)>
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to the standard cross correlation, Rp. Expressing
the decayed portion by the change between the auto
and cross correlations

R (0,7 -7 t/a) - R (5,7)

one obtains an approximation:

RE(6m,7) = (1-3) R (0, y=0,6 = 0 m, 77, 8/3)

(33
+& )

aRp(x:O, y=0, ¢&=a, n,7).

Thus, the estimate of the special pressure cross cor-
relation requires only to change the crosswise sepa-
ration of three transducers, Figure 11.

In the vicinity of boundary layer separation and

reattachment lines, we cannot expect a constant con-
vection speed, U,. However, an average speed was
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already estimated by using the largest Separation £=a
between the upstream transducer 1 and the downstream-
transducer 2. It is hoped that the space average of the
standard cross correlation is reflected approximately
by taking the average convection speed instead.

The observed convected patterns of turbulence
often show that the ratio between convection velocity,
Uc, and the free stream velocity, Ugyq, is often inde-
pendent of Mach and/or Reynolds number. In this
particular case, we can gather all the necessary in-
formation about convection speeds at a particular con-
venient combination of M and/or Re. For all other
operating conditions, the convection speed follows by
calculating the free stream velocity Ugy,. The auto-
correlation function (or power spectrum) could be
obtained by scaling with the Strouhal number [22].
The concept of convected turbulence is therefore a
very powerful tool. Itreduces both the number of cor-
relations and the number of Mach and Reynolds num-
bers that are necessary in a quick look procedure.

V. TOLERABLE ERRORS

In the curve fit of a given crcss correlation, it
has always been assumed that the statistical analysis
of the measured wall-pressure fluctuations is exact.
Inreality, the measured Rp values are only estimates
of a true value. The curve-fitting procedure gives
ambiguous influence coefficients as soon as the error,
o’i}, of an R’f) estimate is equal toor bigger than the
root mean square error (A2 R}‘,)’é , between tl}e esti-
mated Rp distribution and the approximation R which
was given in equation (26). The condition
GR* <(A2 R;) ‘
should therefore be checked in each wind tunnel pro-
gram which tries to predict the autocorrelation of the
generalized forces, Ry(m,n,7), by a curve {fit of ex-
perimental cross correlations. The predicted Rg
values are meaningful only if the condition of equation
(34) is met.

« X
) (34)

The true value of the even space-time correlation
function, R*, was defined in equation (22). It is based
on an "ideal test" which meets the following require-
ments:

(1) The wall pressure fluctuations are a sta-
tionary and ergodic process [11]-

(2) The pressure records are infinitely long
[23].

(3) The complex frequency response function
of the two narrow band filters and/or the time delay
is a Dirac function [ 24j.




: (4) THe transducérs and all data processing

‘elements are both linear and time invariant.

In the actual tests, all four requirements will be vio-
lated, and additional calibration tests are needed to
find the error & ,
R
ot B 3 5

op “[(ATR") +.. + (APR )" (35)
which accounts for the accumulated deviations from
the "ideal test. "

The largest error is due to nonlinear effects and
time shifts on the data reduction chain. Contrary to
the other three errors, (A% R*), cannot be reduced
by a proper choice of the data reduction equipment
and/or repeated runs. This is, therefore, the error
which will ultimately decide whether or not the tests
are meaningful. Also, it is useless to make the first
three errors much smaller than the fourth. A good
choice for the tolerable upper limit of error mentioned
above would be

(AZR¥), sé (A’R"); £=1,2,3. (36)

Anestimate of (AZR* )4 is now possible for a data re-

duction chain whichislinear and time invariant enough

such thatthe amplitude dependence and the time shifts

of the frequency response function might be treated as

random disturbances. As an example, a data reduc-

tion chain istreated which consists of N = 6 elements.
£ = 1 Transducer

2 Transmission line

3 Tape recorder channel
4 Filter or time delay

5 Multiplier

6 Integrator

The average actionof each element is now completely
describedby its complex frequency response function,

H, (w) = ,lHI(w) 1P (@) (37)

=

('D

aus

cr

The elements f =1, 2, 3, 4 arc used in pairs bec
the pressures from the points j=1 and k=2 a
handled independently as indicated in Figure 8. For
each pair of elements, the cross-power spectrum of
the two inputs j and k is related to the cross-power
spectrum of the two outputs by

]

_ ] k B .

Sjk ) lout

= | @) - [y (38)

L k|
El[@l(w) —(pﬁ(w)ﬁsjk(w)

The cross-power spectrum of the output is equal to
the cross-power spectrum of the input multiplied by
the gainfactor and the exponential phase difference of
the two transmitting elements. This input-output re-
lation might be viewed as an extension of the power
spectral analysis of equation (9). The two equat1ons
are identical if one demands that HJ(w) - gk (w) for
all elements that transmit both pressures pJ and p
simultaneously. In the above data transmission line
this happens at the multiplier and any following ele-
ment.

in

The output of the element £ is the output of the
element £ + 1 and the action of the complete chain is
therefore given by multiplying the factors of equation
38. Therefore,

S., (w) =
k
output from averager

N=6 ik
Hf el((pﬁ - ¢1).

- Sjk(w) pressure

1:
! (39)
Using equation 39itis possible to eliminate systematic
signal distortions in the final data presentation. How-
ever, the gainfactors and phase shifts of the individual
elements are known only within the statistical errors

AIHH , AIHI l and A((pi - <p1), which summarize the

effects of nonlinearity (amplitude dependent frequency-
response function), time variance (time shift of cali-
bration curves), and the errors tlhat were inherent in
the calibration device used to measure response func-
tions Hy (w). For small and random derivations, the
accumulated error is then given by the error propa-
gation law:

N fos. SCEN
(Azsjk)4:1;1 a|H/z| Al 5"\ og, 29 5k

(e Dy
=8, (&,n,w) -
SRECACTDERNT

+ [AW’i - (Pf)] 2y . (40)
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In presently available commercial data reduction
equipment, the biggest errors are introduced by dy-
namic phase shifts between transducers and between
the channels of tape recorders [24]. Relative mean
square errors of

L
[(a%s ),
—SM ~ 20% (41)
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are to be expected even for carefully selected ele-
ments. It seems that nonlinear effects and dynamic
shifts in the transducer and in the data transmitting
elements are so big that the more refined force
estimates, which consider the spatial structure of the
pressure field, might lead to ambiguous results.

Equation (40) gives the error of a cross power
estimate in a form which is directly applicable to dy-
namic calibration tests. The wanted error of the
cross correlation estimate follows from a Fourier
transformation in time. This shows that the statisti-
cal errors will be of the same order of magnitude
whether the statistical analysis is done in the frequency
domainorinthe time domain. The error analysis and
the inherent demand for dynamic calibration are there-
fore quite general and not restricted to the cross
correlationtechnique. Infuture calibration programs,
one has to measure not only the "average" frequency
response function but the disturbances of the gain
factors and phasc differences that are produced by
nonlinear and dynamic effects in the transducer, in
the data reduction chain, andinthe caltbration device.

Equation (40) could be used as a basis for a sur-
veyof optimum linear and time invariant elements and
calibration procedures. Measuring the standard de-
viations for the gain factors and phase shifts of each
data transmitting element, the smallest pressure
cross correlation could be calculated which is still
meaningful in acoustic wind tunnel tests.

VII. CONCLUSIONS

Recent flight and wind tunnel tests indicate that
the skin of large launch vehicles might suffer a high
frequency vibration caused by flow separation and
oscillating shocks. This paper discusses the feasi-
bility of obtaining the aerodynamic forcing functions
at anearly design stage by a cross correlation of wall
pressure fluctuations, which have been measured on
rigid wind tunnel models.

The relation between generalized forees and wall
pressures is illustrated for the simplest of all cases,
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the rectangular flat plate with simply suppoi'ted, édgés.

All simplifying assumptions will be listedin a separate’
report and may be verified in future tests. A simple

excitation response relation is given which is valid

notonly for the flat plate but also for all panel configu-

rations and all edge conditions, the free vibration of

which can be described by orthogonal modes.

The accurate prediction of skin vibrations re-
quires the power spectrum of the autocorrelation of
the generalized forces which act on the individual
modes. Their exact determination would lead to a
fourth order integration over the cross correlation
function of two transducers which are independently
moved across the panel. The experimental and nu-
merical effort in this exact solution is prohibitive and
simple models of the pressure field have to be tried
instead. The approximation with normalincident plane
waves andthe assumptions of homogeneous turbulence
arereviewed. The first neglects the spatial structure
of the pressure field completely and the second might
lead to ambiguous results for high shear flows and/or
supersonic flows with boundary layer separation and
reattachment.

Unfortunately, the largest pressure fluctuations
are mostly associated with inhomogeneous flow. It is
shown that the force autocorrelations might be ob-
tained for inhomogeneous flows by a curve fit of a
"special'' pressure cross correlation function. For

homogeneous turbulence, this curve fitting procedure
is equivalentto Allan Powell's spatial Fourier decom-
position ("'joint acceptance').

The experimental and numerical effort of any
curve fitting procedure is still so large and costly that
it can be applied only to very few cases where simpler
pressure models give marginal results. A quick look
is described which estimates the space-time cross
correlation by the use of only three transducers on
opposite panel edges. It is based on the concept of
convected turbulence and shows that only very few
Mach and Reynolds numbers are necessary in "quick
look'" tests provided that convected turbulence is the
dominant noise source.

A curvefit of experimental pressure correlations
is useful only as long as the statistical error of a
cross correlation estimate is smaller than the numeri-
cal error of the curve {itting procedure. An analysis
of systematic and random errors indicates that non-
linear effects and dynamic shifts in the data trans-
mitting elements might produce relative mean square
errors up to 20 percent. The refined estimate of gen-
eralized force, whichis based on the spatial structure
of the pressure-space-time correlation function, might
therefore lead to ambiguous results. The pressure



. i s s reo g
transdycer and the data reduction chain must be cali-
‘brated very accurately not only for the time average
{frequency response but also for dynamic shifts of gain

factor and phases.

Dynamic errors are particularly

severe in small pressure transducers and tape re-
corders.

The interest, discussions and constructive criti-

cism of Dr. W. H. Heybey, Dr. R. D. Rechtien, and
Mr. K. D, Johnston, Mr. G. A. Wilhold, Mr. L. A.
Schutzenhofer, and Mr. R. Thornton are gratefully
acknowledged.
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This paper

M. F.

SUMMARY

outlines an approximation theory for

the calculation of the linearized subsonic and super-
sonic flow around pulsating bodies of low aspect ratio,
extending K. Oswatitsch's and F. Keune's theories for
steady flow to these unsteady flow cases.

Inafirst approximation, the flow around pulsating
bodies of low aspect ratio consists of two terms:

a. A two-dimensional cross-flow.

b. A spatial influence which depends only on the

sum of
section.

the source-elements over the cross-

This spatial influence reduces the flow over puls-
ating low aspectratio wingsto the flow over the equiv-
alent pulsating body of revolution. A similarly char-
acteristic structure of the flow field is found also for
the higher order flow terms.

In addition to the basic conditions for linearization,
the range of validity of this approximation theory is
essentially bound by certain combinations of aspect
ratio, Mach number, and reduced frequency.

These order of magnitude considerations can be

further substantiated by comparing the approximation

theory with certain exact solutions of the unsteady
linearized potential equation. Such solutions are fou
for the infinitely long tube or ribbon pulsating harmoy§-
cally in subsonic or supersonic flow.

Symbol

LIST OF SYMBOLS

Definition

Amplitude of cross-sectional pulsa-
tion

Free-stream velocity of sound

Euler's constant = 0.5772 ....

Integral cosine function

«

By

Platzer

Symbol

d(x,y)

E[n] (X,y,2)

EY
(o]

g @
(o]

[n]

m

M

p

Q(x)

q(&.m)
r, 0
s(x)

Si

V(x)

X, ¥, 2
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ON AN EXTENSION OF OSWATITSCH'S EQUIVALENCE RULE TO UNSTEADY FLOW

N65-24129

Definition
Amplitude of pulsation

Sum of source-moments of nth order
over the cross section

Hankel function of first kind, zeroth
order

Hankel function of second kind, zeroth
order

imaginary unit
EUL reduced frequency

Modified Bessel function of second
kind, zeroth order

Characteristic length (wing-root,
body-length, wavelength of pulsation)

Source-moment of nth order
U

g , free-stream Mach number
Laplace transform variable

Amplitude of cross-sectional pulsa-
tion

Source-distribution
Cylindrical coordinates
Half-span of wing
Integral sine function
time

Free-stream velocity
Definition equation 2. 8

Cartesian coordinates Figure 2

_w
c(M+1)
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LIST OF SYMBOLS (Concluded)

Symbol Definition
al =

c(1-M)

w
1"

“ c(M-1)
B 1-m2
cota VM2-1
&(X,y,2,t) Disturbance potential
O (X,y,2) Amplitude of disturbance potential
¢q(x,y, z) Cross-flow potential
(,‘bR( X) Spatial influence

27 .
Y —L-’ Wave-number of pulsation
K L W

cB®’ ¢ cota
M wU __wu

2Bt 7 ¢t eotia
w Circular frequency

s
(o) L reduced span
&.n Source coordinates

I. INTRODUCTION

The problem of steady linearized subsonic and
supersonic flow about bodies of low aspect ratio at
zero and small angles of attack has been treated by M.
Munk [2], H. S. Tsien [3], R. T. Jones [4], G. N.
Ward[ 5], M. C. Adams -W. R. Sears [ 6], F. Keune-
K. Oswatitsch[ 7], [8], and M. A. Heaslet ~-H. Lomax

(9.

M. Munk [2] first recognized that the flow about
bodies of revolution at small angles of attack may be
considered two-dimensional when viewed in cross
sections perpendicular to the longitudinal axis. With
this idealization, the local lift distribution can be ob-
tained from simple momentum considerations. R. T.
Jones [4] later found that this concept also holds for
low aspect ratio wings. Garrick [ 10] and Miles [ 11]
finally could show that the Munk-Jones hypothesis of
two-dimensional, incompressible flow in planes nor-
mal to the flight direction retains considerable useful-
ness also for harmonically oscillating slender pointed
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wings and bodies. Thus, thehvelocity' p'oteﬁtia_l of the
transverse flow pattern satisfies in both cases, steady
and unsteady flow, Laplace's equation in two dimen-
sions. However, for unsteady flow the condition of
sufficiently low reduced frequency must be fulfilled in
addition to the condition of very low aspect ratio. For
high reduced frequencies, the concept of two-dimen-
sional cross-flow may be extended to compressible
flow, the velocity potential satisfying now the two-
dimensional wave equation of acoustics [ 16] .

Inall these casesthere is only a cross-flow to be
considered reducing the original three-dimensional
problem to a two-dimensional one. This is an im-
portant simplification explaining the general use of this
slender-body concept in modern missile aerodynamics.

We want to turn now to the corresponding sym-
metrical steady and unsteady flow cases; namely, the
flow about bodies of low aspect ratio at zero angle of
attack whose skin may be stationary or execute time-
dependent breathing vibrations (pulsations).

The steady flow about bodies of low aspect ratio
at zero angle of attack has been treated by G. N. Ward
[5], M. C. Adams-W. R. Sears [6], F. Keune-K.
Oswatitsch [ 7] [8] a.o. This case proves to be more
difficult than the calculation of a lift distribution on a
lifting delta wing, according to R. T. Jones, or on a
lifting body of revolution, according to M. M. Munk.
The lifting effect corresponds to the effects of a dipole
distribution and produces disturbances only within a
short distance. Therefore, the influence of the parts
of the body in front of or behind a given cross section is
of higher order and may be disregarded. In the non-
lifting flow case, however, the effect of body thickness
corresponds to a source-sink distribution producing
disturbances over a large distance. Considering the
incompressible cross-sectional flow alone, therefore,
would neglect the 'spatial influence" of the parts of
the body in front of or behind this cross section. This
influence being of the same order of magnitude as the
cross-sectional flow has therefore always to be re-
tained in order to obtain a correct descriptionof the
nonlifting flow about bodies of low aspect ratio.

Representing the wing by a source distribution,
the disturbance potential of the cross-sectional flow
is given by

+5(x)
P(x.y,2) =5 f( )
-s(X

+ op (X,

a(x,n) £ny (y-n)® +2% dn

(1.1)

where q(x,y) is determined by the boundary condition
at the body, and ¢R(x) is an additional function of x
whose meaning was not always clear in the literature




*cussion in Ref. 6).

of* fhé slen(ief' Body a‘ﬁpfoximation (compare the dis-
s Oswatitsch and Keune [7,8]
could show that this function is just the spatial influ-
ence mentioned previously and can be extracted from
the exact solution of the linearized potential equation
for low aspect ratio wings at zero angle of attack.

= —_— Q(E,ﬂ) d§ dn
Py ' ff P 2,02 2
F o /(x-6)%+ pAy-n) % 2
for M< 1
(1.2)
1
(X, y,z)—-2 ff q(&,n) d& dn
\/(X*é) cot?a (y- n)2-cota 22
for M> 1

After proper expansion of this double-integral with
respect to the source distance from the axis, two
terms are obtained. One is the cross-sectional flow
i.e., the first term in equation (1. 1); the other main
term reads

L
1 V(§) de = V(x)
¢ (X,I‘) :_—f . £n
R 471'0 (X_£)2+B2 2 21r
for M <1
(1‘.33)
) __x—rcotoz ViE) dt
PR®T) = -5,
o \/(x—g)z— cot? o r?
—“;—(fllnr for M > 1

and reduces in the immediate vicinity of the body to

/ 2. ) _ d
ptx) = L YBCAL LB fvm tn (x-¢) dg + avam fn (5-%) dg
L2 f\”;) fn (e-b)ds

(1. 3b)

= 2for M< 1
S 1for M> 1

by a proper limiting process r —0. The function V(x)
in equation (1.3) is defined by

+5(x)
v(x) = |
-5 (x)

q(x,n) dn. (1. 4)

Thus, the spatial influence, equation 1.3, is depen-
dent only on the sum of the source distribution over
the cross section. It is easily interpreted as the dif-
ference of the potential of abody of revolution whose
source distribution is given by equation (1.4) and its
cross-sectional flow potential. The spatial influence
of a given low aspect ratio wing and the spatial influ-
ence of its equivalent body of revolution, i.e., that
body having the same total source strength in all cross
sections, therefore, are the same. Since the total
source strength is proportional to the cross-sectional
area, equivalent bodies are defined as bodies having
the same cross-sectional area distribution (Fig. 1).

y o
g % V. & ////.,//'/

////// s

2 Qp(x) = Q)

'y
x = Const.

FIGURE 1. LOW ASPECT RATIO WING AND ITS
EQUIVALENT BODY OF REVOLU-

TION

These considerations led Oswatitschto the postulation
of an equivalence rule for both the linearized subsonic
and supersonic flow regimes and the nonlinear trans-
onic region which he first communicated at the VIIIth
International Congress for Applied Mechanics [12] in
1952. At nearly the same time, experimental investi-
gations on equlvalent bodies in the transonic range
were carried out by R. T. Whitcomb [13]. His main
interest was in finding bodies of low drag; he arrived

in this way at the equivalence concept by noticing that

the shock waves in the transonic range become axisym-
metrical in a rather short distance and that they tend
tobecome of the same shape as the shock waves of the
equivalent body of revolution. These results are
generally known as the '"area rule. "

2. EXTENSION OF OSWATITSCH'S EQUIVALENCE
RULE TO PULSATING FLOW

We want to extend now the work of Oswatitsch and
Keune to unsteady flow and consider a wing of low
aspectratio in linearized subsonic or supersonic flow
whose skin performs a symmetric harmonic pulsation

35



(Fig. 2).1 We mention that the problem is identical
to the problem of a vibrating low aspect ratio panel
embedded in the xy-plane, which is of considerable
interest for panel flutter investigations.

Cross Section x = Const.

FIGURE 2. SYMMETRIC HARMONIC PULSATION

Assuming harmonic pulsation, we may write the dis-
turbance potential ¢(x,y,z,t) in the form

iw
®(X,y,2,t) = ¢(X,¥,2) e t, (2. 1)
and, similarly, the pulsation amplitude
D(x,y,t) = d(x,3) e . (2.2)

We assume the pulsation amplitude to be zero at the
edges of the wing,

d(x,s(x)) = d(x,-s(x)) =0,

and restrict ourselves to the first pulsation mode sym-
metrical to the xz-plane.

Within the framework of linearized theory, the
problem is entirely determined by the exact velocity
potential equation (2. 3a) for subsonic flow,

1The author wishes to thank Professor K. Oswatitsch,
Vienna Institute of Technology, Austria, for his sug-
gestions and encouragements.
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{2.3a)
and by equation 2. 3b supersonic flow
M> 1
P (x,y,2)
_ L f Q) cosix Wty —cotta(y-m) ~cot’a - 2% - e+ 78 ag an

2n S 'V(x—.g)z - cot?a (y-n)*-cot’a z?
(S = area cut out by the upstream Mach cone)

(2. 3b)
As is well known in steady aerodynamics (e.g., Ref.
1,pp. 498 and 514), the source distribution can be
expressed also for pulsating flow by the normal ve-
locity on the wing surface, -
a(x,y) = 2 w(x,y,0), (2.4)
where w(x,y,0) can be related to the pulsation ampli- ‘

tude by means of the linearized boundary condition on
the surface of the pulsating wing:

W(X,y,0) = = [iwd(X,y) +U@é—§*ﬂ]. (2.5)

The evaluation of the double integral equation
(2. 3) for arbitrary plan forms, frequencies and Mach
numbers can be achieved only by tedious numerical
integration. Therefore, an approximation theory will
be developed which generalizes the approach first
given by Oswatitsch and Keune for the case of steady
flow [7, 8].

Since the coordinate y of a source element on the
wing areais always small compared to the root length
L, we may write for the velocity potential (considering
first only subsonic flow)
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Fou large distances from the wing A¢ (x,y, z) will
become negligibly small compared to the first term
in the expansion and the potential becomes with
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where
+s(x)

Qx) =2 [ d(x,n) dn (2. 10)
-5(X)

is the amplitude of the cross-sectional pulsation of
the wing. For points near the wing, however,
A¢(x,y,z) is of equal order of magnitude as the first
term in the expansion. Here the term x-{ approaches
zero; therefore the term y-nhas an important influence
on A ¢(X,y,z). The maininfluence of this second term
can be taken into account, however, by replacing the
variable source distribution w(£,7) by the source dis-
tribution at a given cross section £=x; thus
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If we make now the further approximation that instead
of integrating from the leading edge x1,(n) to the trail-
ing edge xT(n) we extend this integration in the inner
integral of equation2. 11 to - and +w, then a
closed form solution is obtained:

(2. 11)
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There remain two terms K; and K, [ 14] which can be

shown to be of higher order. Hence, the final result
can be written in the following form:
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We mention without proof that a similar approach for
supersonic flow leads to [ 14] [15]
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Hence, the induced flow field consists of two potential
flows, atwo-dimensional flow satisfying the Helmholtz
equation

2
w
by 9pn T T 070, (2-17)

and being induced by the source distribution equation
2. 4plus athree-dimensional flow being induced by the
source distribution equation 2. 8. This flow is identi-
cal with the flow around a pulsating body of revolution,
equation (2.9) with equal variation of the cross-
sectional pulsation, along the X-axis. Comparing
equations (2.13) and (2. 15), it is seen that the two-
dimensional flow is the same for subsonic and super-
sonic flow. The spatial influences $R(X,y,z) equations
(2.14) and (2. 16) are different, however, for subsonic
and supersonic flow and represent the influence of the
parts of the body in front and behind a given cross
section. They are obtained, as in the steady flow case
[ 7], by subtracting from the potential of the pulsating
body of revolution its cross-flow potential.
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Of particular importance are velocity and pressure
distribution onthe wing surface. These quantities can
be obtained from equations(2.13 - 2. 16)by a limiting
process z — 0, r — 0. Then we obtainimmediately for
the cross-flow in subsonic and supersonic flow
+ s(x)

(2) {w
( s ) H (_ - ) d
-fs(x) wosm 87 (=) (21.7}518)
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and after some manipulation for the spatial influences,
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where Ci and Si are the Integral Cosine and Integral
Sine Functions. This approach which was rather based
on physical considerations about the main influences
upon the flow field can be supplemented by two other
mathematically more rigorous approaches. For this
purpose, we generalize a method first used by F.
Keune for the steady flow problem [18] and rewrite
the potential for the pulsating wing equation (2.3a) in
the form
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where a% = (y-n) + z2.

Integration by parts and proper expansion gives in a
first order approximation for the potential function of
the pulsating wing in subsonic flow

P(5y,2) = 65 (X:3,2) + (%) (2.22)
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The second approach can be obtained by generalizing
the Adams-Sears method [6] to pulsating flow. We
show this for supersonic flow and use, therefore,
Laplace transformation

—- -px
$(p,y,2) :f e ™ ¢(x,y,2) dx.
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transforming the potential equation into
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A proper solution of this equation is
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We are looking for a solution near the body and ex-

pand, therefore, the modified Bessel function with
respect to its argument

2 A
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' (2. 26)
C = Euler's constant,

Retaining in a first approximation again only the linear
terms gives after inversion for the potential function
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« of the pulsating wing in supersonic flow,
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Equations 2.22 and 2.27 show that these ap-
proaches lead to different definitions for cross-flow
and spatial influence, the cross-flow being again the
same for subsonic and supersonic flow, but satisfying
now the two-dimensional Laplace equation.

Itcanbe shownthat the representations, equations
(2.18) - (2.20) and equations (2.22) - (2.27) are
equivalent, this being quite analogous to the different
forms found in steady flow (compare M.D. van Dyke,
Second-Order Slender Body Theorv: NASA TR-R-47,
equations 7 and 8).

It is also easy to verify that, for vanishing fre-
quency, F. Keune's solutions for steady flow are ob-
tained (equations 2. 10, 3. 10, 4. 1 and 4. 2 in Reference
8).

Similarly, a further limiting case for M = { can
be obtained [ 14], [15]. For the transonic flow case,
however, the frequency must be kept sufficiently high
inorder not to violate the assumption of linearization.

Summarizing our results, we have found that the
flow near the body can be considered two-dimensional
in every cross section and is easy to be calculated
from the Laplace equation

Pyt Ppy = 0. (2.28)
Hence, the disturbance potential is
1 +s(x)
o(y2) =5- [ wxem) InW (y-m) ¥+ 22 dn
-5 (x)
T OR(x)- (2.29)

Asin the stationary case, the solution is dependent on
an additional function ¢ R(x), namely the spatial in-
fluence. Generalizing Oswatitsch's and Keune's

conception,we have obtained for this spatial influence
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where ¢e=2for M< 1
iforM>1.

Having essentially replaced a solution to the com-
plete linearized unsteady potential equation

u? 2U 1.
(1_ cz) Pax Pyy " Pan T T P T F Py T 0‘(‘2 31)

by a solution of the Laplace equation (2. 28), the fol-
lowing restrictions have to be imposed in addition to
the conditions for linearization (cf. J. W. Miles, The

Potential Theory of Unsteady Supersonic Flow,
Cambridge 1959).
lt-m2fo? <1 kMEoPecti  KIMZ02 << 1, (2.32)

where k is areduced frequency and ¢ ameasure of the
lateral extent of the wing.

We want to mention that the range of validity of
the solution can be extended by keeping the higher
order terms of our expansion of the velocity potential.
This can be done in generalizing Keune's method for
steady flow [17], [19] or generalizing the Adams-
Sears procedure [6]. Keune's method is physically
more appealing, however, showing that the higher
order flow terms are built up by certain higher order
moments of the basic source distribution.

We remember that in our first approximation we
needed:

a. The local source distribution q(x,n)
b. The sum of the sources over the cross section.

+s(x)
Vx) = [ ax,n) dn
-8{x)
We introduce now after Keune [12] also for pul-
sating flow the higher order moments of these quanti-

ties, namely.,

A
(X,5,2,7) = d(x,7) a" = a(x,n) [ (y-n)%+ z2]2
(2.33)
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and the sum of these source momentsover the cross
section

+s(x)

(x,y,2) = [

-5(x)

NS

g™ G, [y - )2 + 22]

(2.34)

The significance of these quantities can be seen from
Figure 3

Cross Section x = Const.

FIGURE 3. PHYSICAL SIGNIFICANCE OF
SOURCE MOMENTS

= distance of a point P in the cross section
x = const. from a source—element at point S.

a= PS

It turns out that also the higher order terms of
the expanded velocity potential of the pulsating wing
equation(2. 3lcan be interpreted as a generalized cross-
flow and a generalized spatial influence if instead of
the local source distribution q(x,7n) and its sum over
the cross section V(x) the higher order moments
ml?] and E[P] are used. A more detailed discussion
is given in [14, 15], Thus, a relatively simple
theory is obtained for pulsating bodies in compressible
flow which extends appreciably the range of validity of
the first approximation equations(2.29)and(2. 30) .
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Furthermore, it should’ be mentioned here that. ' t

these developments for the pulsating wing can be used
to obtain another and quite elementary approach to
"quasi-slender body theory" for oscillating wings and
bodies of revolution which gives some new insight to
the basic structure of the flow field around oscillating
bodies, too [14] [15].

3. Comparison With Exact Solutions

The usefulness of the approximation theory de-
veloped in the previous section can best be assessed
by comparing it with exact results. There are con-
figurations for which exact solutions of the linearized
unsteady potential equation can be found. We mention
the infinitely long pulsating tube and ribbon.

Consider first a tube of small diameter whose
axis coincides with the X-axis and whose flexible wall
executes apulsation of wavelength L. We assume this
wavelength to be large compared to the diameter of

the tube. The wave number of the pulsation is y = —

L
and the subsonic or supersonic flow is aligned to the
tube, i. e., in the direction of the positive X-axis

FIGURE 4. INFINITELY LONG PULSATING TUBE

The spatial influence equation(2. 19) for subsonic
flow simplifies for the infinitely long pulsating tube to
[14], [19]

M< 1: w!x—g!
Pp(x) = f gj_)__qiél Ye(1-M) dt

o0 . wgg—x!
1 q(é) - g(x) ~-i N .
5 { TTa ¢ oM dt (3. 1)

Inserting the appropriate source-distribution for the
pulsating tube leads to the following final form for
this spatial influence with A as amplitude of the cross-
sectional pulsation:
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A similar expression is obtained for supersonic flow
[14, 15]. We note that ¢g(x) = 0, for y = 0. If the
wavelengthof the standing pulsation is infinitely large,
i.e., the tube is pulsating with constant amplitude
over the tube length, then there is no spatial in-
fluence. In this case, strength
are distributed over the entire x-axis, and as is well
known, a solution is givenby the cross-flow, i.e., the
cylindrical solution. There is a spatial influence,
however, for non-zero y, which may even become in-
finite if one of the "matching conditions" y = & or Y=o

+
sources of constant

* is fulfilled, i.e., if the wavelength of the advancing
or receding acoustic wave coincides with the wave-
length of the standing tube pulsation.

Tofind an exact solution for this case, we have to
extend the limits of integration in equation (2. 9) and
toinsert the proper source distribution, thus obtaining,
for M < 1,
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An evaluation of these integrals is possible [ 14,
15] and leads to the following closed form solution:
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for supersonic flow,
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This solution for the infinitely long pulsating tube *
which we have obtained here direectly from the potential
equation (3.4) can be found also according to R. W.
Leonard and J. M. Hedgepeth[20] by considering first
the solutions for traveling waves and composing them
to the standing wave solution.

We mention without proof that proper expansion
of the exact solutions, equations (3. 6) and (3.7), with
respect to the argument and retaining only the linear
terms leads to equation (3. 2), thus providing a quanti-
tative check on the range of validity of this solution
[14, 15].

A further interesting exact solution can be found
for the infinitely long pulsating ribbon of constant
width. Assuming sinusoidal pulsation over the x-
direction, the chordwise integration again can be car-
ried out which reduces the double integral to a single
integral over the functions, equations (3. 6) and (3.7),
which had already been obtained for the axisymmetric
case. This solution appears to give good approxima-
tions for the aerodynamic pressure distribution on
fluttering panels of high length/width ratio. Thus, a
relatively simple aerodynamic theory might evolve for
panels of length-width ratios comparable to those oc-
curring onSaturn V panels. This problem area is now
under detailed study.

CONCLUSIONS

An approximation theory has been developed to
calculate the linearized subsonic and supersonic flow
around pulsating bodies of low aspect ratio which
generalizes the theories of K. Oswatitschand F. Keune
[7, 8, 17, 18, 19] to unsteady flow.

The flow around pulsating bodies of low aspect
ratio consists of twoterms, a two-dimensional cross-
flow and a spatial influence which depends only on the
sum of the source elements over the cross section.

A similarly characteristic structure of the flow
field is found also for the higher order terms by intro-
ducing after Keune [ 17] higher order source moments
and the sum of these quantities over the cross section.

In addition to the basic conditions for lineariza-
tion, the range of validity of this approximationtheory
is essentially bound by sufficiently small aspect ratio,
Mach number, and reduced frequency, so that
o N I1-M%f< 1 kMo < 1

is fulfilled.
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These order of magnitude considerations ¢an be® *

further substantiated by comparing this approximation
theory with certain exact solutions of the unsteady
linearized potential equation. Such solutions are found
for the infinitely long tube or ribbon pulsating harmoni-
cally in subsonic or supersonic flow.
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ON THE PRESSURE REQUIREMENTS FOR STRUCTURAL RESPONSE EEQtJATI().Né

By

Nes 4130

The fluctuating pressure requirements for the cal-
culation of flight vehicle vibration environments are
reviewedin light of the developmentofa "lumped'" im-
pedance approach to the response problem. This re-

sponse approach demonstrates that the only fluctuating
pressure information required is the pressure cross-
power spectral densities,

For homogeneous anisotropic flow conditions, a
considerable simplification in the response equations
result, For this flow condition it is suggested that the
pressure cross-power spectral density informatio
reduced to a more elementary form.

#
DEFINITION OF SYMBOLS ‘%

Symbol Definition

H(T, s, W) Structural transfer function

H(T, &k, W) Wave number spectrum of the
structural transfer function

F(s, t) Applied sinusoidal force at the
point s

US (T, t) Structural response at T due to the
applied load at’s

oq () Phase difference between the re-
sponse at r and the applied load at
s

AS(_f) Magnitude of the response at T
due to a sinusoidal load of unit
amplitude applied at’s

P(s, t) Fluctuating pressure acting at the
point s

R (r)Aw Narrow=band response coherence

R function
PSDp(§, w) Pressure power spectral density

Pressure cross-power spectral

CPSD (s, s, w)
P density
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DEFINITION OF SYMBOLS (CONT'D)

Symbol
PSDR(?, w)

Co(s, s! w)

Quad(s, s', w)

M (E, w)
p

Z(w)

Y> B

r

wl

Definition
Response power spectral density

Co-spect_rul_n—the real part of
CPSDp (s, s, w)

Quad-spectrum-the imaginary
part of CPSDp (8,8 w)

Wave'number spectrum of CPSD
(5, 5, W) P

Point impedance function
Orthogonal surface coordinates

Position vector for the response
measurement point

Position vector for the load appli-
cation point

Circular frequency
Frequency bandwidth
Vector wave number
Wave number bandwidth
Separation vector

Time

N1

Incremental surface area
Free stream velocity
Center frequency

Wave velocity

Coincidence vector wave number
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- I. INTRODUCTION

The structural integrity of present day flight ve-
hicles depends to a large degree on the accuracy with
which one can predict the dynamic stress levels that
the structure will endure under operational conditions.
Such stress levelsare derived from the anticipatedvi-
brational environment, which in turn is deduced from
available fluctuating pressure information. The ac-
curacy of the predicted stress environment, therefore,
merely reflects the adequacy, or inadequacy, with
which the dynamic characteristics of the structure and
the characteristics of the fluctuating pressure field can
be described. These characteristics are ultimately
coupled by means of a mathematical formulism to pro-
duce an environmental response calculation.

Under operational conditions, the flight vehicle is
subjected to a wide variety of dissimilar fluctuating
pressure environments, of which those that fall within
the broad classifications of engine aerodynamic noise
and inflight aerodynamic noise sustain a position of
great importance. Now 'noise' is a word which has
many meanings; thus, it is important that it should be
clear what the word is to mean in the present context.
Here, noise will be regarded not just as "unwanted
sound' butas something more explicit, a random dis-
turbance, and will include those processes or experi-
ments in which the results fluctuate irregularly.
Hence, noise in the present context refers to pressures
which fluctuate randomly intime. Randomness, on the
other hand, is a less restrictive phrase and may be
extended to describe also the spatial distribution of the
fluctuating pressures in that they are irregularly dis-
tributed and this distribution is unpredictable. Thus,
the term "random," as used in the present context,
refers to processes where both the time fluctuations
and spatial distribution are unpredictable.

The common feature of all ""noise" environments
experienced by the operational vehicle is that they are
random, both in space and time, and the associated
measured pressure quantities can be considered only
inastatistical sense in an "average' sort of way. As
the exciting pressure environment is random, so also
is the structural response, and again statistics come
into play in its description.

Various statistical measures of fluctuating pres-
sure and response constitute an input-output system
in which the proportionality factor is referred to as
the structural transfer function. This input-output re-
lation can attain any degree of complexity depending
on the degree of rigor with which one attacks the prob-
lem, and the format of pressure and structural

« . -

information. For a statistical response approach,
the calculated response quantity is a matter of per-
sonal choice. One may, for example, be concerned
with the mean-square, autocorrelation, cross-corre-
lation, power spectral density or Cross-power spec-
tral density of either a displacement, velocity, accel-
erationor strain. The choice of measure of a partic-
ular response quantity depends on the needs of the
response analyst. The choice of the statistical pres-
sure measure requiredfoi the computation of response
is, however, not quite so arbitrary; but yet it is inde-
pendent of the desired statistical response measure.
That is to say, regardless of the desired response
measure, the format of the required pressure infor-
mation remains the same.

The thirdnecessary response quantity, the struc-
tural transfer function, isalso arbitrary to a degree
in that its form depends on the choice of the manner in
which one couples the external exciting pressure to the
structure. It is restricted in the sense that it must
act as a unit conversion system which changes the
units of pressure to units of response. In this regard,
it is dependent to a limited extent on the desired re-
sponse measure, but it is quite independent of the for-
mat of the required pressure information.

The foregoing statements concerning response
equations are notquite true ingeneral, for if one views
the familyof allied response forms that have emerged
in the past few decades, he finds that in most cases
the structural transfer functionis intimately connected
with the pressure distribution. However, if one also
scrutinizes the derivation of those response relations
which do not conform to the foregoing statements, he
will also find that these response relations are merely
degenerates of a rigorous approach (as they must be)
where the intimacy of the pressure distribution and
transfer function has resulted from a specialization of
either the statistical pressure quantitiesor the trans-
fer function independently or by a simplification of the
combination of these quantities. Thus, the statements
of the preceding paragraph are essentially true only
if the response approach is rigorous in the sense that
specialization to a particular structure or pressure
distribution hasnot been made. These statements are
precisely valid if inaddition one can state that the mo-
tion of the vibrating structure yields no reaction to the
exciting pressure field thereby modifying its charac-
teristics. We are speaking now of small lateral dis-
placements of a structure. For example, the magni-
tude of the displacement caused by aerodynamic noise

is of the order of a few percent of the boundary layer
thickness (Baroudi et al., 1963).



The conditionsof smtllness of the lateral dis-
placements of the structure come into play also in the
development of the response relations. It is always
desirable that the structure be linear; that is, its mo-
tion should be describable by a linear partial differen-
tial equation, so that the principle of superposition
may apply.

For a linear structure and for conditions of small
displacements, a rigorous approach to response cal-
culations allows the response problem to be conven-
iently separatedinto two independent areas of interest:
structural and aerodynamic research. Although ulti-
mately the results of investigations within these two
fields of interest must be combined in some 1ashion to

produce a response calculation, the structural and
aerodynamic information can be obtained from quite

dissimilar investigations. Thus, the value of rigid
model wind tunnel experiments becomes evident, as
alsodynamic testing on full scale vehicles, or seg-
ments thereof, using nonaerodynamic exciting sources
(i.e., electromagnetic vibrators). In this way, the
structural analyst has at his disposal the necessary
pressure information from wind tunnel tests which may
have been designed for an entirely different purpose.

This paper undertakes to describe the complete
response problem from asemi-intuitive point of view,
in contrast to a strictly mathematical approach. This
is to demonstrate the relative role of fluctuating pres-
sure information in the response problem. It will also
be shown that, for a given format of structural and
pressure information, the responsc problem can be
considerably reduced to a rapid, accurate, and prac-
tical calculation.

The first part of this report considers the struc-
tural transfer functionin a way that is compatible with
recent trends in structural experimentation. By ap-
proaching the problem experimentally, one is led in-
tuitively to the exact response equation. The second
part of this paper considers the external pressure field
to be spatially homogeneous. This assumption allows
the response equation to be readily reduced to a prac-
tical form.

A rigorous derivation of the resultsof this method
will be published in a paper by the author (Rechtien
1964) .

II. DEVELOPMENT OF THE RESPONSE RELATION
The attitude takenin this approach to the response
problem presupposes that the structure in question, or

a dynamically similar model, materially exists and
can be subjected to physical experimentation. Of
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immediate interestis a function H(r, s, w) which dew-

scribes the transfer of vibrational energy from a point -
S to a point T on the surface of the structure. In order
to demonstrate the interpretation of this function, its
physical measurement will first be described.

Consider any typical vehicle structure for which
the position of any point on its surface is expressible
by an orthogonal set of surface coordinates ¢y, 8 ).
The vector s (v, ) represents the locationatwhich a
force, F(S, t), is applied and r(y,8) representsthe
position vector where the response US(_f‘,t) to the
applied load at s is measured (see Fig. 1).

U (T, t)
S

COORDINATE CONFIGURATION

FIGURE 1.

The force, F(s,t}, applied at S, shall be con-
sidered to be a sinusoid of unit amplitude and circular
frequency w,

F(s,1) = oWt (1)

which is being continuously monitored by some force
measuring device. At location T on the surface of the
structure there exists a response detector, for ex-
ample, a velocity pickup, which also is continuously
being monitored. It is then assumed that a sufficient
length of time has ellapsed since the initial application
of the load so that a steady-state condition exists. The
amplitude of the response atT, A _(T), and the phase
difference, ¢4(T), relative to the force at s, are then
measured. The response at T can then be related
to the applied force at s by the input-output relation

U0 - HES,we (2)

where the transfer function H(T,s,w) is given by

H(T,s,w) = A (?)eid’s(—r) (3)

s

and shall have the units of response quantity per unit of
force. The inverse of this function is generally re-
ferred to as the transfer impedance function. This
function reflects, implicitly, the totality of these mech-
anisms whichact to modify the vibrational energy being
transferred along many paths through the structure te
the point of measurement. When the point of measure -
ment and the position of the applied load coincide, that
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is, when ‘% =S, then [H(T,s,w)] reduces to the
‘well-known point impedance function.

Having now discussed the physical measurement
of the structural transfer functions, ananalogous prob-
lem with a higher degree of complexity shall be con-
sidered. Let the force applied at’s be, in actuality, a
pressure P(s,t) acting over an incremental area AA
of the surface. Further, itis supposed that this pres-
sure is not sinusoidal but a stationary: , ergodic: =
random functionof time. Next, itis supposed that this
random pressure fluctuation is being continuously
monitored by passing the signal from the pressure
transducer through a filter with a very narrow band-
width of center frequency, w., The resulting signal
would resemble a sinusoid in that the zero crossings
would tend to be regular., However, the amplitude of
the signal would be quite random. The response at r
due to this filtered portion, P(s,t) Awe Of the total
pressure, P(s,t), acting at’s is given approximately by,

Us(_f’t)Aw = H(T,s,w) P(§,t)AW AA, (4)

where H(Tr,s,w) has the same meaning as equation
(3), and the subscripts refer to narrow-band filtered
quantities.

Suppose now that at another point s of the struc-
ture a second pressure P(3S!t) is simultaneously ap-
pliedover an incremental area AA'. Its narrow-band
contribution to the response at T is given by

US,(?,t)AW =H(r,s}w) P(s! t)Aw AA', (5)

The question now arises as to the degree of co-
herence between the narrow-band vibrational energy
at r arriving from the two different sources. We are
essentially asking what degree of similarity exists be-
tween the two narrow-band response signals, or al-
ternately, what is the degree of dissimilarity due to
the difference in transmission paths and due to the
difference in phase and amplitude between the two
sources. A measure of the degree of coherence be-
tween the two response signals, considered as being
separable, is given by the time average of the product
of the narrow-band response signal of one times the
complex conjugate of the other,

* One implies by the condition of stationarity that the
statistical measures of P(§,t) are invariant with re-
spect to time translations.

** The ergodic hypothesis implies that if a given ex-
periment were repeated a number of times under con-
stant conditions, the resultsof any one suchexperiment
would be representative of the ensemble.

RR () = narrow-band response coherence
function
lim 1 fT
- — 2 T L 6
T—w 2T o7 Us(r,t)AWUS (r,t)AWdt, (6)

where (%) designates the complex conjugate of the
corresponding quantity. The complex conjugate of the
response functionis necessary since the response co-
herence function is required to be real.

Substituting (4) and (5) into (6) one finds that

. +T
- - - - - lim 1 — —
Rp(T) 5y = H(T,5,w) H* (T,5",w) {T_m 57 fT P(5,1) 5y P (3,0 5 dt} 8A AA',

(7)

The bracketed quantity is just the narrow-band
pressure coherence function between the spatial points
(s,s'), andmeasures the degree of similarity between
the two filtered pressure signals. To be more con-
sistent with the current literature, this function shall
be referred to as the pressure cross-power spectral
density, CPSD_(s,s',w). Similarly, the product of
the transfer functions, H¢ H, can be considered as a
measure of the similarity of the two different trans-
mission paths, Thus,

- I % = — — -
RR(r)AW— H(r,s,w) H” (r,s',w) CPSDp(s,s',w) AA AAT,

transmission path
similarity

response
similarity

pressure
similarity

(8)

Now the response coherence function is a statis-
tical measure andobviously deals with pairs of quanti-
ties, In practice, one is always faced with pressure
fields thatare continuously distributed over the entire
surface of the structure. Obviously, one could then
speak of coherence functions, orcross-power spectral
densities, associated with an infinite number of pres-
sure pairs, each pair generating a distinct narrow-
band response coherence function at the point of meas-
urement, Thesum of all of these distinct narrow-band
response coherence functionsis nothing more than the
narrow-band mean square response at the measure-
ment point ¥, This measure is commonly referred to
as the response power spectral density

PSDg(T,w) = ). Rp(T) Aw (9)

all pairs
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Thus, by summing the response coherence functions
at T fromall possible filtered pressure pairs and pass-
ing to the limit as the incremental areas AA, and AA'
become small, the following integral is generated,

PSD (F,w) = [ [H(T,5,w) B (r,s',w) CPSD
A A

(s,s',w) dAdA', (10)
where the integrations are to be taken over the entire
structural surface.

The power spectral density of the response at a
given point of the structure is the quantity most desired
by the response analyst, Therefore, inessence, equa-
tion (10) is the fundamental response formula. The
fact that the power spectral density of response is here
presented in integral form presupposes that both the
transfer functions and the pressure cross power spec-
tral density are known as continuous variables of the
spatial coordinates. For practical structures, the de-
termination of such transfer functions for the total
structure would not be practical. However, one
generally finds that local stiffening elements, such
as ring frames in flight vehicles, considerably re-
strict the transfer function to have non-negligible
values only in relatively localized areas. Thus, such
structural elements would limit the integration of (10)
to local regions of response significance.

The continuously distributed pressure fields which
one deals with in practice not only fluctuate randomly
in time, but are randomly distributed in space. That
is, if one were to measure the instantaneous pressure
along a profile on the structural surface, the instan-
taneous pressure value at a given position could not be
predicted from knowledge of the instantaneous pressure
valuesatwell separated points. However, such a pro-
file would constitute a continuous pressure curve.
Without being at all rigorous, the idea of continuity is
that the instantaneous pressure curve should be smooth
from one position to the next. Consideration of this
leads to the conclusion that the instantaneous pressure
at a given position is dependent to a certain ex-
tent on the instantaneous pressure at adjacent posi-
tions. Intuitively, if at one position a large positive
value is recorded, a large negative value will not be
recordedat an adjacent point at the same instant. That
is, the instantaneous pressuresat adjacent points have
a high degree of similarity, or dependence. Butas
the interval between the two observed positions is in-
creased, the dependence between them clearly de-
creases, andif the separation interval between the ob-
servation positionsis large enough there will be prac-
tically no dependence, or correlation,
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We are here speaking of the total pressure field.

But the same arguments wouldhold true for the narrow--

band filtered components. Thus, the pressure cross-
power spectral density is actually a measure of the de-
gree of dependence of the narrow-band pressure com-
ponents at two different locations on the structural
surface. Such dependencies give rise to characteristic
curves for the pressure cross-power spectral density,
as shown in Figure 2. The pressure cross-power

[} = separation distance

_.. Co-spectrum U

o - free stream velocity

_— Quad-spectrum fo = center frequency

-0.5

NORMALIZED AMPLITUDE

FIGURE 2. NORMALIZED CROSS-POWER SPECTRA
FOR SUBSONIC ATTACHED TUR BU-
LENT BOUNDARY LAYERS (AFTER
HARRISON 1958) .

spectral densityis by its very nature a complex quan-
tity and is generally represented in terms of its real
and imaginary parts,

CPSDP(E,E',W) = Co(S,5',w) + i Quad(s,8',w), (11)

where Co and Quad are referred to as the co- and
quad-spectrum, respectively. These are the quan-
tities shown in Figure 2. The decaying character-
istics of these curves reflect the degree of dissimi-
larity of the narrow-band pressure components at ad-
jacent positions. For subsonic turbulent boundary
layer fluctuations, Harrison (1958) shows that theco-
and quad-spectra fall to less than one-half of their
peak value for a separation distance of
U
ls-st = f—° , (12)
o

where U, is the free stream velocity and £, is the cen-
ter frequency of the filtered quantities. For separa-
tion distances of twice this length, the magnitudes fall
towithin 10 percentof the peak values, Thus, for sub-
sonic flows, the pressure fluctuations within a turbu-
lent boundary layer are correlated only over distances
ofa few feet for intermediate frequencies. For super-
sonic flows, Kistler and Chen (1962) show that the
distances over which the pressures are correlated are
reduced by anorder of magnitude as compared to sub-
sonic flow conditions. For other flow characteristics,
such as separation and oscillating shock phenomena,
the correlated regions may be increased by an order
of magnitude as compared to their turbulent boundary
layer counterparts. But the point is that all of these
pressure fluctuations are only correlated in localized
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regions of the structural surface. Moreover, such

" areasof correlation are generally of an order of mag-
nitude smaller than those areas defined by the previ-
ously discussed regions of response significance.
Therefore, in general, the effective area of integration
of the response relation (10) will be governed by the
area of correlation of the fluctuating pressure distri-
bution. Since this area is small, as compared to the
total area of the structure, the response relation as
given by (10) is not as formidable as it may first
appear. However, even though the transfer function
and the pressure cross-power spectral density may be
known pseudo-analytically within this area of correla-
tion, the evaluation of a double integration over this
area may still not be practical. Thus, an alternate
form of the response equation which would allow a
rapid andaccurate means of estimating the vibrational
environment would be most desirable. However, to
simplify the response relation as given by (10) one
must idealize the external fluctuating pressure field to
a limited degree. In particular, the pressure distri-
bution must be takenas having a homogeneous charac-
ter; that is, its statistical measures must be taken to
be invariant with respect to a spatial translation. Such
will be assumed in the following section, the conse-
quences of which will yield a more conservative esti-
mate of the vibrational environment.

I, THE RESPONSE RELATION FOR HOMOGEN-
EQUS, ANISOTROPIC PRESSURE FIELDS

In the development of the response relation (10) ,
quantities of time were essentially transformed (by
narrow-band filtering) to the frequency domain, thus
giving rise to spectral quantities. In this section a
further transformation shall be applied, primarily for
the purpose of eliminating the area integrations of
equation (10).

The pressure-cross power spectral density, as
given in (10), is a function of the spatial locations,
(5,8"), at which the narrow-band filtered pressures
arecompared. Asa consequence of the assumption of
homogeneity, this function is no longer dependent on
E_he spatial locations, butonly on the separation vector
6,

5 =5-%. (13)

That is, the pressure-cross power spectral density is
assumed to be invariant with respect to a translation
so that the magnitude and direction of the separation
vectorispreserved, The pressure cross-power spec-
tral density can then be written as

CPSD_ (3,5, w) = CPSDp(E,w) . (14)

Now, just as a function of time may be decom-
posedinto a spectrum of elementary waves in the fre-
quency domain, so can a function of separation be de-
composed into a spectrum of spatial waves in the
wave-number domain. Thus, the wave-number de-
composition of the pressure cross-power spectral
density is given by the Fourier integral relation
(Powell, 1958),
ik.6 &

CPSDp (6,W) =_f Mp(k,w)e , (15)

k
where dk represents the differential area, dkydkﬁ, in

che wave number domain, and the intégral over k ex-
tends over all wave numbers.

Physically, by this transformation, the external
pressure fieldisconsidered to be made up of a super-
position of harmonic traveling waves of amplitude M
(k,w). Now the frequency generated by a particular
wave as it is convected past a particular point in the
flow will be equal to the scalar dot product of the vec-
tor wave number kand the velocity § of the elementary
wave

w=k .u (16)

If all of these elementary waves weretraveling
with the same velocity, then there would be only one
vector wave number, or essentially only one wave,
whichwould generate a given frequency at a fixed point
in the flow by nature ofits convection. Since the pres-
sure cross-power spectral density is defined for only
one frequency, this would imply that it was composed
of only one wave andwould not have a wave number de-
composition such as (15). In this case, the pressure
cross-power spectral density would have the form of
anon-decaying spatial sinusoid, which contradicts the
availablé experimental results (see Fig., 2 or Wills
(1963) for example). This contradiction leads one to
the conclusion that the velocity of the elementary har-
monic traveling waves is not constant, but assumes a
broad spectrum of values for fluctuating flows in gen-
eral, Thisisa mostimportant point, as shall be dem-
onstrated, in the estimation of vibrational environ-
ments.

If the transform relation (15) is substituted into
equation (10}, it can easily be shown* that this re-
sponse relation can be transformed to an integral rep-

resentation over wave-number (Rechtien 1964),

PSDp(T,w) =16r [ Mp(E,w) [H(?,E,w)l 2 dk, (17)
I3

* For a similar treatment, see Powell (1958).
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where H(T,k,w) is the two-dimensional inverse Four-
. ier transform of the structural transfer function,
- i

yo [ HEFW o K (5-T)
A

dA" (18)

Equation (17) is the basic form of the response
equation for homogeneous flow conditions. The pro-
perties of this relation shallnot be discussed, and the
relative advantage of thiswave-number representation
should be clearly evident.

IV. PROPERTIES OF THE RESPONSE EQUATION

In the previous section the structural transfer
function, as well as the pressure cross-power spec-
tral density, was transformed into the wave-number
domain. By this representation, the instantaneous
deflection of the structural surface due to the appli-
cation of a sinusoidal force (which the structural
transfer function essentially describes) is considered
asa linear superposition of structural surface waves.
Now the structural transfer functionis experimentally
determined at a given forcing frequency, w. The
structural waves that will be excited by this distur-
bance will be those for which the scalar dot product of
the structural vector wave-number and velocity of pro-
pagation (i. e. , the material velocity of sound) is equal
to the forcing frequency. The velocity of sound in the
material will not vary greatly in the structure, and
therefore only a few structural waves can be excited
at this frequency. In other words, the wave-number
spectral representation lH (r,k,w) I 2 will be extremely
peaked, as shown in Figure 3 for the one-dimensional
case. This spectral distribution may exhibit more
than one peak as in the case when the material speed
of sound changes drastically across a surface discon-
tinuity.

[, & w2

FIGURE 3. WAVE-NUMBER SPECTRUM OF THE

STRUCTURAL TRANSFER FUNCTION.

The wave number spectral representation of the
pressure cross-power spectral density, M (E,w),
possesses a similar distribution as shown ig Figure
4, This curve was obtained, for the purpose of illus-
tration, by transforming the curves of Harrison given
in Figure 2. Since the co-and quad-spectra are char-
acteristically damped cosine and sine curves,
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respectively, the transformed cro'ss—}iowe? spec‘zr‘aﬁl
will generally exhibit the character of Figure 4. But
the relative peakedness of this curve will depend en-
tirely on the fluctuating pressure conditions.

M (k, w)

k —»

FIGURE 4. WAVE-NUMBER SPECTRUM OF THE
CROSS-PANEL SPECTRUM

Since the product of the two peaked spectral func-
tions, Mp(ﬁ,w) and [H(F, k,w)| 2, comprises the:inte-
grand of the response relation, equation (17), the de-
gree of similarity between them will determine the
magnitude of the response power spectral density.
When the peak values of the two distributions occur at
the same wave number, a coincidence condition will
exist. Coincidence is defined as that condition for
which the dominantpressure wave vector and convec-
tion velocity for a given frequency match the structural
wave vector and the velocity of sound in the material.
This condition is illustrated in Figure 5A. For this
coincidence condition, the response integral of equa~
tion (17) can be accurately approximated by evalua-
ting the integrand at the coincidence value_kc of the
distributions and mu}tiplying by an appropriate band-
width of integration,

PSD, ~ 167 Mp(Ec,w) H(T,K,,w) |2 Ak . (19)

In Figure 5B, another limiting case is considered
where the peak value of the pressure spectral distri-
bution falls well below that of the structural spectral
function. In this case, the structural spectral function
can be considered constant once the effective band-
of integration and the integral (15) approximates to

4 -7 2 i T

~ k M (k,w) dk, (20
PSD_ ~ 167 | H(T, p,w)l ! p( W) (20)
The integral of (18) is defined as the power spectral

density of the pressure at the point r, PSDp(I‘,W).
Therefore, equation (18) reduces to

~ 4 - 2
PSD, ~ 167 lH(r,Ep,w)I PSD_, (21)

which yields the response for forced oscillations (non-
resonant conditions).

Figure 5C illustrates the reverse situation in
which the peak of the structural spectral function falls
well below that of the pressure spectrum. In this




caée‘, ”'tlwq&esshre ‘spec'trum can be considered as
.constant over the effective bandwidth of integration and
the integral (17) approximates to

~ 4 T TR 2 gk
PSDp ~ 167 M_(ky,w) [[H(T,E,w)| 2 dc.  (22)

K
The integral of (20) is simply the inverse of a point
load impedance Z(w), and equation (22) reduces to
M (k ,w)
P s

- 4
PSDR 167 Z(w)

(23)
This condition corresponds to the limiting case in
which the narrow-band pressure fluctuations at adja-
cent points on the structural surface are completely
uncorrelated.

ARBITRARY SCALE

k-

C. Uncorrelated pressure conditions

FIGURE 5. LIMITING CASES OF THE SUPER-
POSED WAVE-DISTRIBUTIONS

Bothof the limiting cases given by equations (23)
and (23) will yield a negligible response relative to a
near-coincidence condition. In practice one should
generally encounter a degree of coincidence lying
somewhere in the intermediate regions between pure

coincidence and the above limiting cases. One must
then rely on intuition to make a reasonable approxi-
mation. But the real advantage in specifying the wave
number distributions of the structural transfer function
and the pressure cross-power spectral density lies in
the fact that the degree of coincidence, and therefore
the degree of response, can immediately be deter-
mined by inspection of the superposed distributions.
A quick estimate of the response level could thenbe
obtained without requiring a rigorous evaluation of the
response integral.

V. CONCLUSIONS

An attempt was made herein to provide a basic
understanding of the response problem, to demonstrate
the relative role of fluctuating pressure information,
and to show that,for a particular format of structural
and pressure information, the response problem can-
not only be entirely separated into two completely in-
dependent areas of experimentation but also can be
considerably reduced to a rapid, accurate, and prac-
tical calculation,

A dynamically scaled model of the Saturn V ve-
hicle is now being fabricated at the Langley Research
Center. Experimental programs to determine the
structural transfer function for this model would yield
the necessary structural information required as input
to the response equation (17). This information, a-
long with wind tunnel pressure data for rigid models,
would provide, by using the response relation given
herein, the means for obtaining a good estimate of the
in-flight vibrational environment.
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NONLINEAR TWO-DEGREES-OF-FREEDOM RESPONSE WITH.

SINUSOIDAL INPUTS

Robert S. Ryan

SUMMARY

The study of a forcedvibrational system is very
difficult if the system is nonlinear. This becomes ap-
parent because the principle of superposition does not
hold as it does for linear systems.

In studying the behavior of linear systems, it is
useful to deal with sinusoidal inputs and resulting out-
puts which are harmonic. By definition the complex
ratio of the output to input is called a transfer func-
tion. This transfer function, since it is complex, can
be written as two parts: the modulus and the argu-
ment. The first describes the so-called response
curves, and the second the phase angle between the
two harmonic oscillations. Because of the property of
superposition inherent inlinear systems, these trans-
fer functions become the basis for a complete discrip-
tion of the system.

In the nonlinear system, the output of the system
to sinusoidal inputs is no longer sinusoidal, but con-
tains harmonics of both higher and lower frequencies.
Neither does the superposition principle hold; there-
fore, a study using sinusoidal inputs does not yield the
wide scope of information obtained in the linear case.
There are other shortcomings in studying the system
using sinusoidal inputs; nevertheless, the sinusoidal
input functions provide a convenient way of studying
the nonlinear system.

This analysis proposes to solve the nonlinear
forced oscillation of a vehicle using air springs for
vibration isolation. Both a single and a two-degrees-
of-freedom system will be studied where the force
applied is considered to be sinusoidal in nature. The
single-degree-of-freedom system is also solved in the
free vibration state using phase plane methods.

I. INTRODUCTION

The isolation of machinery against vibration or
outside excitation has long been a goal of engineers.

The problem was first attacked by linearizing the
problem. In studying the behavior of linear systems,
it isuseful to deal with sinusoidal inputs and resulting
outputs whichare harmonic. By definitionthe complex
ratio of the output to input is called a transfer function.
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This transfer function, since it is complex, can be
written as two parts: the modulus and the argument.
The first describes the so-called response curves,
and the second the phase angle between the two har-
monic oscillations. Because of the property of super-
position inherent in linear systems, these transfer
functions become the basis for a complete description
of the system.

The study of nonlinear systems cannot be attacked
in this simple manner. In the nonlinear system, the
output of the system to sinusoidal inputs is no longer
sinusoidal, but contains harmonics of both higher and
lower frequenciss. Neither does the superposition
principle hold; therefore, a study using sinusoidal in-
puts does not yield the wide scope of information ob-
tained in the linear case. There are other shortcomings
in studying the system using sinusoidal inputs; never-
theless, the sinusoidal input functions provide a con-
venient way of studying the nonlinear system.

The Ritz-Galerkin averaging method is presented
as an ideal method for solving nonlinear problems.
Most solutions givenin literature solve simple systems
which are nearly linear in nature and have odd re-
storing forces, and therefore present no real difficul-
ties. The Ritz method can be used to study highly
nonlinear restoring force systems that are general in
nature.

II. BASIC METHODS FOR SOLUTION

There is usually considerable advantage infinding
an analytical solution for the governing differential
equations of a physical system when it is possible to
do so. The solution is obtained in algebraic form and
often gives basic insight into the system. If, however,
no insight is available from the algebraic form itself,
then the equations are in aform suitable for paramet-
ric, numerical studies, thus leading to a detailed look
at the system.

The basic method presented is the Ritz Averaging
Method. Itisavery powerful method applicable to both
autonomous and nonautonomous systems. The method
will not satisfy the differential equation point by point,
but will satisfy it only in some mean or weighted
average.



' "T(_) arcive at the Ritz condition, it is best to start
- with the variational problem since many problems in
engineering and physics can be formulated as a mini-
mum problem. The solution is then one that gives
some integral expression a minimum value.

To begiq, let F(n, ﬁ, t) be a continuous function
where 7 and 1 are the functions of time; then

t

1= [F(n, n, t) dt (1)
t

(o]
has some meaning.
The problem now is to choose 1(t) such that I is

aminimum. This is done by variation of n(t). If 7(t)
is a neighborhood function of n(t), then

n(t) =n(t) + e Y(t),

where ¢ is a small arbitrary number and Y is an ar-
bitrary function.

This is a problem of calculus of variations, and
the extremum I may be obtained by letting

dr
de

t
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The main idea of the Ritz method is to let extre-
mum I depend on a finite number of parameters only,
by approximating n(t) by a function 7j(t), where

n

() = ), @ g (). (2)
i=1

Then ;(t)'s are known functions, and ay's are coeffi-
cients to be determined. The problem is now to give
I a2 minimum value when I depends on a finite number
of parameters. Minimizing the functional integral I
with respect to the undetermined coefficient o; leads
to the following n equations:
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Integrating the second term by parts yields
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If the second term vanishes for the limits t, to ty - this
can be accomplished by proper choice of ¥; - then

t
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Inthe braces are Euler equations or the differen-
tial equations of the system. Therefore,

t
1

S D@y dt=o (6)
¢ i
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is the minimum problem with D(%) the differential
equation of the problem. It coincides with the Euler
equation of the corresponding variational problem
written as a function of the assumed function in equa-
tion (2). However, this equation will not vanish at
every point as the Euler equation does. This method
has, however, the advantage of operating with the dif-
ferential equation and not some expression I; in fact,
I does not have to be known if the differential equation
is known. The weight functions correspond to the co-
ordinate function of equation (2).

The procedure for solution of nonlinear equations
is now straightforward and contains the following
steps:

First, assume the approximate solution

¢}

T =), e (D). (7)
i-1

Second, solve the integrals

t

[ D@ g dt=0. i=1,2 ...n (8)

t0

Third, solve the resulting algebraic equations for the
coefficients ;.

The obvious disadvantage of the method is that some
idea of the nature of solution is necessary for choosing
the weight functions. Otherwise, too many terms will
be necessary to get accurate results.

M, APPLICATION OF METHOD TO A SPECIFIC
PROBLEM

A. DERIVATION OF BASIC EQUATIONS DE-
SCRIBING SYSTEM
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To illustrate the use of the Ritz method, the re-
sponse of a traveling vehicleto sinusodial force inputs
is chosen where the spring is an air spring. Both
single and two degrees-of-freedom are studied.

The first step in describing the characteristics
of the system is to derive the expression for the re-
storing force of an air spring. This is accomplished
by assuming that adiabatic conditions hold for the gas
(air); therefore, the characteristics of an air spring
under the influence of a load can be determined using
the relationship between volume and pressure in the
form

P=—", (9)

where V, and P, are the equilibrium volume and pres-
sure of the gas column in a cylinder at static equili-
brium, V and P the displaced volume and the corre-
sponding pressure, and y the ratio of specific heats.

Let x be the displacement of the piston from
equilibrium; then the volume at any displacement x is

V(x) = Vo - on, (10)

where A, is the cross-sectional area of the cylinder.

If £, is by definition the height of the piston from
the bottom of the cylinder at the equilibrium position,
then

V =Af .
o 0 0

Substituting the foregoing equation and equation (5)
into equation (4) yields the pressure as a function of
the displacement as

Y
X

P(x):P0 ( -1—) .
o

The following diagram depicts the above defini-
tions and coordinate system.

(11)

m | ———=—Valocify
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 v,amat=§s)

FIGURE 1. THE SINGLE-DEGREE-OF-FREEDOM

SYSTEM
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The total force acting on the pi.stion: sinpé itlis
evenly distributed, yields

=Y
F =P A (1-1) .
p o o IZO

Since the weight is balanced by part of the total force,
the weight of the mass must be subtracted from the
total force to get the restoring force. By definition,
w = mg = PO Ay thus, the restoring force becomes

<\
R(x) =P A ||1-7 - 1.
[0}

The restoring force as derived is of a general nature
and is valid for each spring of the two-degrees-of-
freedom system and the single-degree-of-freedom
system. Figure 2 is a plot of the restoring force as a
function of displacement.

(12)

(13)
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FIGURE 2. COMPARISON OF CURVE FIT TO
ORIGINAL RESTORING FORCE FOR

vy=1.4

The equation of motion reads, by usingequation (13),

. =Y
mx+P A [( _&Q_(L)_) —]=o. (14)
o o f
0
Dividing (14) by m and assuming that
X(t) +L(t
BOLLLM (15)
(o]
yields




7-7-_1‘: w(,‘z;‘ [(1‘_ n)_y - 1]: —'QZZO sin Qt, (16)

where
vo g
“o © m{ :[
o [
and
T =i 17
o £ ° (17)
o)

where w, is the undamped natural frequency of the
linearized and transformed system. The time is
t = S/v in which v is the traveling velocity of the ve-
hicle. Equation (11) is then the basic equation of
motion for a single-degree-of-freedom vehicle with
an air spring.

A two-degrees-of-freedom system should ade-
quately represent a traveling vehicle if the system is
considered to have two air springs sinusoidally forced
with a phase lag between them. The following diagram
depicts the system.

]
s 6 1
= 2 .L < 1|
iy txptals) :E"”' +2(s+t)

L

FIGURE 3. THE TWO-DEGREES-OF-FREEDOM
SYSTEM

In the diagram,x is the displacement of the center of
gravity of the system, and ¢ is the angular rotation
about the center of gravity.

The equations of motion can now be written as

mX + Ry(x;) + Ry(xg) = 0 (18)
I({; +a Ri(X1) -b R2(X2) = 0, (19)
where

m = vehicle mass

I = moment of inertia of vehicle mass about

center of gravity

Ry(x1) = restoring force on piston 1
R;(x3) = restoring force on piston 2

Xy = total displacement of air in piston 1

Xy = total displacement of air in piston 2
a+b=L.

Since x4 and x,; were defined as the total displace-
ment of the air column from equilibrium, their re-
spective definitions become
Xg=Xx+a ¢+ L(s) (20)
xzzx-Bq)+§(s+L), (21)

where s is the displacement along path and L is the
distance between the pistons.

By using equations (13), (20), and (21), equa-
tions (18) and (19) become
=Y
.. Y +
ak, [( _&a%ém) i 1] .

1

(22)
B -y
-k, Ki_u%ugm) 1]_0
2
3 -y
¢+k3[<1—x—+—i‘2i§—(ﬂ) 1:]-
1 N (23)
X - Dby + (s + L)
-k [(1 2 ) 1:] =0,
2
where
P A
ky = ;n : (24a)
P A,
ky = —— (24b)
ar A
kg = (24c)
I
b P2 A2
k4 = 1 . (24d)
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Now letting
_x*tag+L(s)

2, = X+ al + S (252)
1

Zz:x—bq) +1§,(s+L) (25b)

2
L(s) = éo sin Qt (25¢)
C(s + L) :QO sin (Qt + a) (25d)

in which the phase lag « can be determined in terms
of the vehicle velocity v and its length L, equations
(17) and (18) yield
.o 12 L
EZi+T—a-iz+Tk1 [(1 - 2'1) Y '1]
1 1

L - -
+17;k2|:(1-z2) V-1]--BF T sinqt
(26)

-2 szzto sin (9t + @)
= - 0? Zo [sin Ot (b +3 cos ) +2 cos Qt sin a/]

12“ Lk

24 -7 % +7’_3 [1- 2 1] ‘li;'k4|:(1‘22)—y“1]
1 1

= - Q? T sin qt + % T sin (ot + @)

(27)
o027 (i _ .
= Q é’o [bln Qt (cos a - 1) +cos Qt sin oz],
where
S0
[N (28)

1

B. SOLUTION OF EQUATIONS

To solve the nonlinear forced response (equa-
tion (16)) by the Ritz method, a solution is assumed
for 7. This solution must contain a constant term
since the restoring force is not symmetrical about the
n-axis. This leads to

n-=M+Q sin Qt, (29)

where M and Q are constants to be determined. Since

2m 2T
oF
a_ﬁ (1)—:‘ :QCOST] =0 (30)

o (o]

and

OF 27 27
57.; sinT =Q cos T sin ’T] =0, (31)

(] (o]

conditions (46) of the Ritz method then yield

27

Sy ar =0

o

27

fD(n) sint dr = 0. (33)
o

Replacing the second term of equation (11) by a
power series yields

7+ wf) Zain1 =- @ ZO sin Q t. (34)

The coefficient ay is equal to 1, and the a, coef-
ficient is zero since the curve must pass through the
origin. Using the approximated differential equation
(60) leads to two algebraic equations in M and Q, the
simultaneous solution of which gives the forced re-
sponse. These equations are, if the series is cut off
as the 5th power,

8(aM + apM? + agM® + a,M* + agM®) + 4(a, + 3agM +

+ 6a,M? + 10a;,M%) Q? + 3(a, + 5asM) Q' - 0 (35)

rH(ZT_+ Q)+ (ag - 2a,M F 3agM? ¢ 4a,M? + 52;M*4) Q?

3 [
+7 (ag + 4a,M + 10a;M%) Q° + § as Q@ -0 (36)
where
2
2 _ S
rf=5 . (37)
o]

To solve these equations, the method of steepest
descent was used. The results of these cquations are
shown on Figures 4 and 5, and show the response in
absolute maximum amplitude denoted by 1 versus the
frequency ratio with the force amplitude as parameter.
When éo equals zero, the backbone curve, or fre-
quency, as a function of amplitude appears.

It can be seen that the system first softens for
small amplitudes and then hardens for larger ampli-
tudes approaching a constant value as the frequency
increases.

A jump in amplitude will occur at any point where
the slope of the amplitude curve is infinite. By ob-
serving the amplitude curve, it is seen that, as the




fréq'u'éncy r:?tio is increa'sed, a jump in amplitude will
. occur giving large amplitudes of oscillations. Starting
with a large frequency ratio and decreasing the value
will first give a jump of increased amplitude and then
a jump to a lower amplitude. It seems advisable,
therefore, for the natural frequency of the system to
be above the forcing frequency by a factor of two or
three to maintain a low response value.

C. TWO-DEGREES-OF-FREEDOM SYSTEM

Equations (26) and (27) described the basic
equations of motion of a rigid two-degrees-of-freedom
vehicle. These equations are again nonlinear.

To solve the nonlinear two-degrees-of-freedom
system, a polynomial of fifth order will be used to
represent the restoring force function of equations
(26) and (27); therefore,

2 3 4

-1:zi+azzi+az,+az +a z% (38)

-y
(1-2) IR

This leads to
12 L
b Zy+ 7 2 Zg + 7 Ki [zl + agz} + aged + ayzd + agzl
1

§

L 2 3 4 5
t 7 Ka[2g + agaf + agad + agzf + a2 |- (39)
1

2T . — — .
Q QO [sm Qt(b +a cos @) +a cos Ot sin oe].

£
. 2 .. L 9 3 4 5
Z9-7 22ty K [21+ agz + agzd + ag2 + a2} |
1 1
L
-7 K4 (22 + 2§ + age} + agzf + aszg]: (40)
1

2 . .
l - 1) + |
Q Zo sin Qt (cos « ) +cos Qt sin @

Again the Ritz method is applied. Since the sys-
tem has nonsymmetric restoring forces, and the
forcing functions have both sine and cosine terms, the
assumed solution takes the form

zZ, =M +Q, cos Qt +R, sin Q. (41)
i i i i
Substituting equation (41) into equations (39) and (40)
leads to the differential equations in terms of the as-
sumed solution (41).

Application of the Ritz method yields the following
six integrals:

2T
fDi(zi) dr = 0 i
)

i

1 and 2 (42)

2m
fDi(zi) cosTt dr =0 i
o

1 and 2 (43)

27
S Di(z) sinTdr=0 i=1and2, (44)
o

where Di(zi) are the differential equations with the
assumed solution (41) applied.

Applying equations (42), (43), and (44) gives the

following set of nonlinear algebraic equations for the
coefficients Mj, Qi’ R

2
. 2 3 4 5 2
Z R, [2Mi b 2Mja, + 2Mlay + 2Mia, + 2Ma; + 2,Q

2 2 2,3, ot .3, ne
+ + + += +
agRi 3a3M1Ql 33.3M1R1 4 3,4Qi 4 3.4Ri

6 i
+ 6a,MIQ2 + 6aMIR? + 7 2, QIR + =2 agM. G}

15 4 32 $p2 , 30 25,2
+ + + + =
2 AMRY + 10a;M%Q7 + 102 MR + < agM QZR?=0

(45)
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Y Ky, [21\/1 + 2a2M2 + 2a3M3 + 2a4M4 + 2a5M5 +a Q2
i=1

3
2 4
.214Ri

3

2 2 2 4

+ + + += +
azRi 3a3MiQi 3a3MiRi 4 a4Qi 4

22 252, 8 ~on2 ., 15 4
+ + + =
62,M?Q} + 6a,MIR} + 7 a,Q'R? + —7 a;M R}

1

+22 5 M Q! + 10aM°Q2 + 10a;MR? + 22 4 M Q¥R=0

4 i’i i’i ii 4 iii
(46)

2
[Z Ay Q +§ (b+acosaﬂ+z Kli[:Qi

i=1 i=1

3. A3 2 3 2 3
+2 + = + + = +
azMiQi n athi 3.213MiQi 4 a3QiRi 3a4MiQi

+ 4a4M3Q +3aM.Q, R + a5Q ——~a5M2Q3
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2 2
2 I:_ Z AziQi +_§_0 (1 - cos a)j|+,21-Kzi l:Qi
1:

i=1

3, 03 3 2 3
+ += + 3a;M%Q . += +
2a2MiQi 4 a3Qi asg iQi 4 a3QiRi 3a4MiQi

+ 4a,M%Q, + 3a,M Q R? += 5Q5 a M2Q2
11 111

+ 5a5M‘;in + 5’;—0 a;MIQR? + = 5 2R 12 a5Q§R§:|

= 0. (48)
2 — J—

2 [—121 A R+ sin o}» D K. [Ri + 2aM R,

3. o3 2 3. 2 3 3
+= + +=
= agR; + 3aMIR, + 7§ a;QIR, + 32 MR} + 4a,M{R;

30
a5R + == a5M2R3 + 5ag M4R

+ BaM, QZR +13 .

24

30
+Za5M2Q2R + a5Q2R3+ a5Q4R:| 0.  (49)

2
2| _ R _T si =
Q [1;1 ayR - T sin a] ) K, [Ri + 2a,MR,

3 _n3 2 3 A2 3 3
+= + += + +
= agR® + 3a;MIR + 7 QIR + 3a, MR} + 4aM{R,

i 0
+ BagM, QZR + 22 a5R§ +3T asM"i’Rg + BagMiR,
30 202
+7 BMIQR, + a5Q2R3 —6 asQ;Ri:' =0, (50)
where
L P1 A1 Y
Ry=—"Fo (51)
1
Ke="7m (52)
i
La P1 A1 Y
KZI = —I_I_ (53)
i
_ -Lb P2 A2 Y
R (54
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Ay=b A R 6 15)

~ 512
Ap=-— (56)
1
Ap=1L, (57)
£
_ 2
Ag=-L. (58)

These algebraic equations are solved by using the
method of steepestdescent as was done for the single-
degree-of-freedom system.

Information of the dependency of the amplitudes
M;, My, Q;, Qp, Ry, and R, on the system parameters
is shown on Figures 6 through 11. Of main concern
are the forcing frequency, the amplitude of forcing
function Eo’ and the phase (@) of the forcing frequency
Q, with the other parameters r, «, and Eo noted on
the respective curves. Since the meaning of the curves
seems to be clear, they require little comment. It is
obvious that two resonance conditions occur with the
backbone curve appearing when Eo is equal to zero.
The system contains the jump phenomenon discussed
under the single-degree-of-freedom system with the
significant difference that it occurs near each reso-
nance frequency. The effect of changing the ratio of
specific heat v is not significant. The changing of the
forcing function amplitude EQ does not give a larger
maximum response due to the nonlinearity, but does
give larger amplitudes away from resonance.

Amplitude

FIGURE 4.

SINGLE DEGREE OF FREEDOM
RESPONSE vy = 1.4
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FIGURE i{1. TWO DEGREE OF FREEDOM RESPONSE
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v =1.4, a = 45 DEGREES
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A SIMPLE METHOD FOR DETERMINING THE BENDING MOMENT EQUATION THAT INCLUDES
VEHICLE ELASTIC AND SLOSHING MODES AND A NUMERICAL EXAMPLE

5 NG5 24131

Robert S. Ryan, Fred Swift, and Don Town®end « "

SUMMARY

This paper describes a method for deriving the v
bending moment of a vehicle in terms of pertinent

control parameters. The equation is presented in a Vw
form that is easier to use for control optimization X
techniques, particularly if the bending moment at some

critical station is chosen asthe value to be optimized.
The form of the equation lends itself to any technique

cg
used in vehicle dynamic response studies. Also in X
this form, the effect of various parameters is com- E
pletely separated allowing a better survey of causes
and effects. Anumerical example is given and the ef- XK
fects of angle of attack, engine deflection, bendingdy-
namics, and propellant oscillations determined. The X
trade-off between angle of attack and engine deflectio T
is shown graphically. x
DEFINITION OF SYMBOLS W y
Yo (x)
Symbol Definition "
v(x
a, Attitude control gain *v( )
w(x
bO Angle of attack control gain V(x)
C Local normal force coefficient y
z
D Reference diameter of vehicle o
o}
F Swivel thrust 2w
s
F(s) Alpha channel filter transfer function a(x)
I Moment of inertia B
M Mass of vehicle 721/
M(x) Local mass distribution ¢
M' Aerodynamic Moment coefficient -
T
N' Aerodynamic normal force coefficient
~
E
q Dynamic pressure v
Ey,
s Vehicle reference area A \ ?
Wy
T(s) Actuator transfer function Dp

) A\g\ Symbol

Definition
Vehicle velocity
Wind velocity
Vehicle station
Location of vehicle center of gravity
Gimbal station

Vehicle station about which moments
are taken

Vehicle station at aft end of vehicle
Vehicle station at nose of vehicle
Normalized deflection of vehicle
Slope of deflection curve

Rate of change of slope of deflection
curve

Translation normal to trajectory
Angle of attack

Angle of attack due to wind
Local angle of attack

Engine gimbal angle

Elastic deflection of vehicle

Attitude angle of vehicle with respect
to trajectory

Acceleration normal to vehicle cen-
ter-line

Aerodynamic coefficients
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DEFINITION OF SYMBOLS

Symbol Definition
Ml

C1 = _I'
Fs XE

C2 =

1. INTRODUCTION

The ascent of a space vehicle through the atmos-
phere subjects it to many disturbances, including wind
magnitude, wind shear, and turbulence or gusts. The
loads induced on the flight vehicle due to these distur-
bances are of major concern in designing the vehicle
structure. Therefore, we must be able to predict the
probable loads. Of great concern is a means of opti-
mization of control systems in such a manner that the
loads are reduced at the critical station, while at the
same time not building up excessive loads at another
station making it the critical one. Obviously, this
type of loadreduction canplace more payload in space
by optimization of the structure. The form of the
bending moment equation as used by stress engineers
is not readily applicable to the control engineer's opti-
mization techniques. These forms of the equation are
the mode displacement and mode acceleration methods.
A study of these equations shows that the effects of the
various parameters are not completely separated so
that a good physical insight into the phenomenon can-
not be obtained. Also in using equations in this form,
large numbers of terms or modes are necessary for
good convergence. In some cases, numerical ac-
curacy is not good due to the subtraction of large
numbers.

The bending moment equation is presented in a
form which allows the effects of the various parame-
ters to be completely separated and at the same time
retain a form readily applicable to optimization studies
by the control engineer and eliminate the numerical
error. To illustrate this, a numerical example for
the Saturn V space vehicle is included showing the ef-
fects of rigid body angle of attack, engine deflection,
bending dynamics, and sloshing dynamics. Of parti-
cular interest to the control engineer is a curve pre-
senting the trade-off between angle of attack and
engine defleftion.

II. DERIVATION OF BENDING MOMENT
EQUATIONS

A. COORDINATE SYSTEM AND EQUATIONS OF
MOTION
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The coordinate system’ chosen' to dlscribé the

system is a two-dimensional trajectory-fixed system. .

The origin coincides with that of the vehicle center of
gravity on a nominal trajectory. The positive x-axis
is tangent to the trajectory and in the direction of
flight. The positive y-axis conforms with that of a
right-handed coordinate system. Lateral translation
is measured on the y-axis and rotation (¢) is meas-
ured counterclockwise from the positive x-axis. This
is illustrated in the following diagram for a rigid ve-
hicle.

B

. 5>
. a\ Tfasecto v \
No®

FIGURE i. COORDINATE SYSTEM

Figure 2 is a vectorial representation of com-
ponents of the angle of attack.

FIGURE 2. RIGID ANGLE OF ATTACK
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To include vehicle bending, it is assumed that the
vehicle's structure canbe approximated by the super-
position of several free-free beam modes from the
relationship

y(xt) = :L Mty Yox)’ (1)

>



Ce ) . ' .
which defines the centerline displacement of the struc-
“ture; Y(x) is the free-free normalized mode shape
and 71 the generalized coordinate. These mode shapes
are computed with the liquid mass and engine masses
included, but asseumed to be frozen in.

The dynamics of the liquid are represented by a
mechanical model attached to the vehicle tank walls.
This model exactly duplicates the forces and moments
determined from the hydrodynamical solution and ac-
curately duplicates the fluid oscillations within the
assumptions made for the hydrodynamical solution
(incompressible, irrotational fluid with small distur-
bances).

Basesupon these considerations and assumptions,
the equations of motion and various relationships be-

come:

1. Local angle of attack

. - n
- Y XQ . X
A _Vznv YV(X)_%‘/VYV(X()z)

+ +
arigid arotation abending
where « rigid = ¢ - ‘Vy—+ oaw,

. X
o rotation = - —f , and

1,
Y (x) - VszV(x).

@ bending = - E n,
v

2. Rotation equation

m X
s s

¢- 2
S

£s+c1a+czl3+;Q§VﬂV (3)

3. Translation equation (perpendicular to vehicle

centerline)
m

Tokpa-kgp+ ) =L + ) QE 0 (4)
S v

4. Bending equation

m
.. ., . y
+ + + —=
n,t2igagn, tegn, z_‘/y M Y, (xs) &g

.

m

Sy S, oyr
BN W 5s Y1 (xg) v
S,V

_zQDua +;QAW17
(3)

w

5. Sloshing equation

. . . SR ..
gs+2§s “s gs+ws §S+y Xs¢+Vva YV(XS)

“Be+tE ), Y (xg) =0 (6)
14

6. Control equation

= y 7
B=a, ¢T3 ¢, Db o (7
where

= - 1
9= ¢ %nv Y (x,,)

and

X. 1 1:'V XV(;)
@ =¢-Tra - ZV‘,nV Y (x,) - ;7YV(XV) -

B. BENDING MOMENT EQUATIONS

The bending moment arises from the lateral
forces acting on the vehicle. By summing from a
particular station to one end of the vehicle, the pro-
duct of these lateral forces times the distance to the
desired station gives the moment value at that station.
The lateral forces have three sources: aerodynamical
forces dependent upon local angle of attack, inertial
forces dependent upon local acceleration, and lateral
components of thrust due to engine swiveling. The
moment due to thrust misalignment arising from ve-
hicle bending will be neglected. This leads to the fol-
lowing equations for bending moment.

X

E
_as ! _
MB Aero = D CZ (x-x)) a(x) dx (8)
o x o
k
XE ..
MB Inertial = - f M'(x) (x=%y) Ti(X) dx
X
k
- éms (x, - x) £ - (9)

The M'(x) considers the sloshing mass as rigidly
attached at a point; therefore, the sloshing dynamics
show up as the second summation term.
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MB Thrust = FS B (XE - Xk) (10)

Assuming that the bending contribution in equa-
tions (3) and (4) are negligible (this should be a valid
assumption since this is the contribution of bending to
the local angle of attack and should be small), the
lateral acceleration of the center of gravity becomes

m
T N8 o«
Tcg—k2a+k3ﬁ ;——m 5o (11)

and rotational acceleration becomes

m
§=-Cia(x) -Cop+ LT (X -x) b (12)
S

Substituting these relationships into equations (8) and
(9) neglecting small terms yields for the bending

moment
MB(xk) - Maarigid TMIgT % m Mv(x) * ZZ-‘/MS ¢
(13)
where X
M'a(xk) ZQDE f C'Za(xk - x) dx
N' XE
i M' (x) (xk—x)dx
K
v E
T M' (x) (xk - X) (Xcg - x) dx (14)
*k
F "k
i - s !
My (x0) = By = %) = [ M (x) (%, - %) dx
*E
X
F (x, -x.) k
k E '
—S——I— M -0 (xg, - %) dx
g (15)
Xk
M (x,) = - { M'(x) (x - %) Y (x) dx (16)
E
. mS *k
Mé(x - Z =y - x) dx
E
m
+——(x xs) M (x -x) (x -x) dx (17)
X
E
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By taking the limit of the integrals over the total
vehicle we can see that each of these coefficients
satisfies the boundary conditions (moment zero at end
of vehicle). These analytical results are not included,
but can be verified by consulting the plots of these
coefficients presented in the next section.

Representing the bending moment in this form has
numerous advantages to the control engineer. Among
these advantages are

(1) complete separation of the effects of the
various control parameters,

(2) weighting or trade-off of the various param-
eter effects as a function of vehicle station, thus, lead-
ingto optimization possibilities at the weakest sections,

(3) the moment is not as sensitive to numerical
errors because the coefficients can be computed on
large computers using large numbers of terms, and

(4) greater physical insight into the problem of
load reduction.

I1I. NUMERICAL EXAMPLE

The bending moment coefficients as derived were
computed for the Saturn V space vehicle at 70 seconds
flight time (Figures 3-6). The ratio of the coefficient
of angle of attack to the coefficient of engine deflection
is shown on Figure 7. It can be readily seen that any
control law that increases the ratio of engine deflec-
tionto angle of attack will be detrimental to the bend-
ing moment.

FIGURE 3.
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To determine the effects of the various parts on
the total bending moment, a response of the vehicle
was made. The control equation was assumed to be
ideal with the rate gyro located at the vehicle tail for
bending mode stability. All sloshing modes were
damped by introducing adequate damping into the slosh
equation. The input force was the Marshall synthetic
profile with 99 percent wind shear, 95 percent wind
magnitude and the superimposed 9 m/ sec? gust. Plots
of the total bending moment and the various parts are
shown on Figures 8 and 9. Bending dynamics have an

70 Second Saturn V. LOR
Nom, Cuse

110

FIGURE 8. BENDING MOMENT DUE TO SLOSHING
VERSUS VEHICLE STATION

MB X107 7 N

70 Second Satarn V. LOR

STATION IN METERS

FIGURE 9. CONTRIBUTING PARTS TO BENDING
MOMENT VERSUS VEHICLE STATION
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effect of from 5 percent to 50 percent depending 'oh the

~vehicle station. The maximum effect of propellant -

oscillations is 3 percent. The contributions of angle
of attack and engine deflection are about equal.

Figure 10 is a plot of some representative failing
moment (not actual since this was not available) with
the bending moment obtained superimposed. It be-
comes quite clear that optimizing the moment at the
two or three critical stations would give better struc-
tural integrity. Since the purpose of this paper was to
present the equations, no attempt at optimization is
made, however, it is believed that the results shown
give ample evidence of the advantage of writing the
bending moment equation in this simple form.

STATION IN METERS

2 30
X 10f l

-1.04

K
INCH - LBS.
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FIGURE 10. SATURN V FAILING MOMENT VERSUS
STATION,70 SEC

CONCLUSION

A simple representation for the bending moment
has been given. It can be concluded from the results
presented that the form of the equations leads to greater
physical insight and provides the control engineer with
a tool that can be readily used in optimization tech-
niques.
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SUMMARY -

l?résented in this paper is an analytical solution
for the transient response of a multistage space ve-
hicle to a general external load. The structure of the
vehicle is considered to be a stepped beam with uni-
form sections.

William type modal solution for a uniform beam
is assumed for each section of the beam. Upon im-
posing the conditions of continuity of these sectional
continuous functions, these functions should yield equal
magnitudes of deflection, slope, bending moment and
shear force at the junctionss and the boundary condi-
tions at two ends, the characteristic determinant of
natural vibration, and the arbitrary constants of the
solutions are determined. The differential equations
of the generalized coordinates are obtained by making
use of the orthogonality relation of the eigenfunctijo

LIST OF SYMBOLS
Definition W

Symbol

a = EI/A G

A cross-sectional area of beam

AS effective shear-carrying area of cross
section

[ An] column matrix, arbitrary constants

b = 1/AL?

[ Cn] column matrix, arbitrary constants

c = El/me4

D characteristic matrix

Dmk element of the adjoint matrix of D

E Young's modulus of elasticity

g row matrix defined by equation (16)

1 moment of inertia of cross section

by

Frank C. Liu

Symbol

n

K

fte]]

77Q

Q

\ ‘ ON TRANSIENT RESPONSE OF A MULTISTAGE SPACE VEHICLE

Definition
square matrix defined by equation (15)
length of one section of beam
total length of beam
mass of beam per unit length
bending moment or total mass of beam
total number of section of the stepped beam
generalized load defined by equation (24)
external load
= gt %/EI
square matrix defined by equation (13)
rigid body translation
time variable
shear force
static deflection
coordinate
= x/1
transverse deflection
=y/4
natural vibration mode
=+/ct, dimensionless time variable
rotation of cross section
patural vibration mode of y
natural frequency of beam

static part of rotation ¢
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LIST OF SYMBOLS (Cont'd)

Symbol Definitioh
o, generalized coordinates
i
Superscripts
n designates quantity of the nth section.
INTRODUCTION

In the dynamic analysis of a rocket or a missile,
the structure is usually treated as a uniform beam in
very crude approximations, or as a beam with many
uniform sections inusing matrix methods. Obviously,
the first approachgives a very poor result for a multi-
stage space vehicle because of the abrupt change of
structural parameters from one stage to another. In
matrix analysis, the structure can be represented ac-
curately, but the quality of the result depends on fine-
ness of the breakdowns of the structure. This often
leads to manipulation of large size matrices. Hence,
the limited capacity of the digital computer and the
excessive cost and time required to invert and to find
eigenvalues of a large size matrix are disadvantages
of the matrix method.

In the proposed method of this paper, the space
vehicle is treated as a uniform stepped beam. Each
stage of the vehicle may be further broken down into
steps as desired. The differential equation of beam
vibration considered is the Timoshenko type which is
written in the form of simultaneous equations in two
variables with a general external load function. Our
analysis is to find the response of the stepped beam to
a general external load. The solution given by this
paper is exact and maximum size of the matrix in the
calculation is 4 by 4.

We now outline the analysis as follows:

(1) Assuming a solution of the beam differential
equations in the form given by Leonard [3] for each
section of the beam independently, we can obtain so-
lutions which are sectional continuous functions with
undetermined arbitrary constants;

(2) By imposing the conditions of continuity to
the section or continuous functions such that the as-
sumed solutions yield equal deflection, slope, bend-
ing moment and shear force at the junctions of the
sections, we canexpress thearbitrary constants of the
solution for each section in terms of arbitrary con-
stants of the two end-sections through chain relations;
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(3) Applying the natural boundary condifions at
the two ends of the beam to the solutions, we formu- °
late the characteristic equation from which the eigen-
values can be computed, and in turn, the eigenvectors

of the arbitrary constants are obtained;

(4) Using the orthogonality relation of the eigen-
functions, we determine the differential equations of
the generalized coordinates of natural vibration.

II. ANALYSIS

A, EQUATION OF MOTION OF A UNIFORM
BEAM

Thewell known differential equationof transverse
vibration of a uniform beam, including rotary inertia
and shear deformation effects, may be written in the
the form of simultaneous equations of two variables of
the form [3]

(
Y gy Y mI &y _
Eloz vALe ¥ A oC 0 (1)

e N

o ) o
A G (5;{‘5 - ﬁ)-m 3= -alx),

.

where y is the transverse displacement and i is the
rotationof the cross section of the beam. Expressing
the above equations in dimensionless form, we have

¢'v+é(z'-¢)-b{p' =0

51‘<Z"-¢')—'z'=—a, (2)

in which the primes and dots denote the derivatives
with respect to the dimensionless spatial coordinate
X and the time variable 7, respectively.

A great deal of work has been done insolving this
system of partial differential equations. The solution
given by Leonard [3] is presented here. Leonard as-
sumes the solution of (1) in the form

o0
2(%,7) = S(1) + W(R,7) + ), $.(7) Z,(D)
i=0
© (3)
p(E1) = KT+ ), 6 (1) (R,
i=0
where S(7) is the rigid body translation of the beam,
W(X,7) and Q(x,7) are the static deflection andro-
tation, Z; (X) and ¥ (X) are the natural vibration



mode¥, afd ‘q). '(-r) a‘re the generalized coordinates.
. We will use the same form of solution for a stepped
beam,

B. EQUATION OF MOTION OF A STEPPED
BEAM

Consider a stepped beam consisting of N uniform
sections as shown in Figure 1. The spatial coordinate
of the beam x and the beam parameters will be de-
signated by a superscript "m" to indicate the nth sec-
tion of the beam. These parametersare assumed con-
stant in each section of the beam, but may vary from
section to section,

! 2 } n-1 n n+1 { Nlf—x

N

> x

>

l» ! .
X n
le 21 > 1 >

FIGURE 1. COORDINATE SYSTEM OF

MULTIPLE SECTION BEAM

It is obvious that for each section alone the sys-
tem partial differential equations are still governing
equation of motions, and the solution given by equation
(3) is still valid within each section. These solu-
tions are sectional continuous functions. Conditions
of continuity at the junctions of the sections must be
satisfied, and the natural boundary conditions at two
ends of the beam must be fulfilled by these functions.

i. Conditions of Continuity. The following
are the conditions of continuity:

[y(xn,t)]Xn:O =|:y(xn— , t)] Xn—iztn—i

i) n 0 n-1
RASS ,t)] =[ 7 V(X ,til -1 n-1
[an xn=0 an 1 xn e

n n-1 (4)
E\’I(x ,t)] =[M(x ,t)]
n n-1 n-1
X =0 x ={

2. Boundary Conditions. Four types of
boundary conditions will be considered:

Displacement zero z =0

Total slope zero z' =0

Moment zero
(5)
Shear zero z' -y =0,

3. Orthogonality of the Eigenfunctions. The
orthogonality relation for a uniform beam can be ex-
tended to a stepped beam. As shown in Appendix D of
Ref. 1, we have

L
f mﬁ(zizj +b\pi\1/j). dx =0 1i#j (6)
o

C. THE GENERAL SOLUTIONS

We now proceed to determine the terms given
in equation (3).

1. TheRigid Body Translation., The rigid
body translation of the beam is the same for all sec-
tions. It can be obtained by direct integration of the
total external load acting on the beam and dividing by
the total mass of the beam:

L
S(t) = fff a(x, t) dxdtdt / M. (7)
[e)

2. The Static Solution. Setting theinertia of
rotation term equal to zero in the first equation of (1)
and replacing the inertia term of linear motion by the
inertia due torigid body motion in the second equation
of (1), we have

Q”(x T)+— [W! (x,T)—Q(X,T)]—O

—— W (G, - o (&, ™) = - &, D

a

+ 8 (. (8)

Eliminating the variable Q from these equations, we
can obtain the solution for W by direct integration:

W(?c“.fn)= ffffq“(dszn)‘—a“ffq“<di“)"’
w2 @ EEAD S 7 A @ Ko

when [Cn] is a column matrix of four arbitrary con-
stants of integration. These constants are determined
from the conditions that the static solution W satisfies
both the conditions of the continuity, equation (4), and
the natural boundary conditions, equation (5). The
formulation of Cn is given in Appendix A of Ref, 1.

3. Solution of Natural Vibrations., Since the
natural vibration of the beam is. harmonic with fre—
quency w,, we may replace b, by -(w?/c)¥. and Z
by —(wz/c Z, in equation (2). 'This yields i
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a” vy () + Z! (%) - v, (x) + (bn/cn)wi th(%) =0
n =n n, n n (9)
Zv.v(?()_\IJ!(X)+(a/C)w2.Z.(X)=O'
i i i
i = 0, 19 2, *

The solution of the above equations is

—n . n_n\|,n
zZ (X)) = (cosh a? %" sinh a??ﬂ cos ﬁ? X sin g, X )E\J (10)
1

] n n._n n n_n n_ . n_nn n_n\{ n
v (xn) =(d, sinh ¢, x d, cosh @ X - e, sin ﬁi X ei cos Bi X Ai ,
i i i

where A? is the ith eigenvector of A? and

n n n n\ n n n n n\ n
d. ={lo. +2a w¥c . e. =g, -a we |g. ,
i i i i i i i i

where «, and B, are the real and imaginary roots, re-
spectiveiy, of the algebraic equation

A: + xg (a+b) wi/c - (abwi/c - 1) wi/c =0. (12)

We now form a column matrix which consists of
four elements: deflection, slope, bending moment,
andshear force. It isreadily seen from equation (10)
that

n T
{Y(xn) dY—(xn) M(x") V(xn)} = QUx") A", (13)

dx
where
¢ cosh aX £ sinh o X ¢ cospg X £ sin 8 X
o sinh 0 X o cosh ax 44 sin g x B cospgx
Qx =
) - A - £ I - Elg c -
B I T I T }
T e 1
“(?—M 9 ginha X ‘S—’;—Hl 44 osh X F‘—(—',jj—)l - sinji X —("5—“ 1 2¢) g Bx ]
al a a a [

1

Let us denote

Q) = [Q(in):l L and @ =[Q(in):l .
X =0 % =t

With the aid of the above notations, the conditions of
continuity given by equation (4) may be written simp-
ly in the form

n n n-1 -1
Q A" =@ A", (14)

By successive substitution of equation (14), An can be
expressed in terms of Al,
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’ R
A =K al (15)

where
. -1 n-1 - - _ -
K= @7 @hT @) et

By making use of equations (13), (14), (15) and
the following row matrices

g = {1 0 0 0} for deflection,
g, ={0 1 0 0} for slope,
(16)
gs = {0 0 1 0} forbending moment,
gr = {0 0 0 1} for shear force,

we may express the natural boundary conditions sim-~
ply as

DAl = o, (17)
where
— =
g
r
Q1
D = o r,s,t,u=1,2,3,4
t N_N
Q; K
L i

Hence, the characteristic equation is obtained by let-
ting the determinant of D equal to zero

IDI =0, (18)

fromwhich the eigenvalues or the natural frequencies
W, i=1, 2, ... are computed. Let Dmk (wi) denote

the elements of the adjoint matrix of the matrix Ds
then the eigenvector of A; is

Al 1
Aj Dpq(w,)/Dyg(w,)

A; S|ad| T D3y(w,)/Dyy(w;) (19
Al Dyy(w,) /Dyg(w,)

and

Al = K'(w) Al . (20)



The general précedure of computing w; is suggested
. as follows:

1. Assume a value of wi.

2. Find oz?and B? forn=1,2,...
(12)

,N from equation

3. Compute Q and Q1 forn=1,2,
tions (13) ©® (15).

.N from equa-

4, Compute ID(w,)I from equation (17).

5. Repeat steps 1 to 4, until ID(w )I approaches to
zero.

4. The Generalized Coordinates, ¢: (t).
Substituting the assumed solution, equation (3), into
the differential equation of motion (2), and making use
of equations (8) and (10) yields

o [ d ¢>i(t)

i=0
- 3t2 W(X s '\]c t) (213.)
# ¢, (1) 1
E—dz—+w ¢>(t>Jﬂz<x)
i=0
- 322 @, JTty . (21b)

Now, we multiply equat1on (21a) by m¢®Z. and equa-
tion (21b) by bm £° \I' then integrate the sumover
the range 0=<x<IL.. Maklng use of the orthogonality
relation given by equation (6) we find that

2 2
d¢i +'wz<¢>=—L *—d Pi(t) i=0,1, 2
dt? i7i m, dt? YT T

! (22)

The generalized mass and the generalized load ap-
pearing in the above equationare defined, respectively,
as

N
m, = Z fi mn(ln)z[zzi (?n) +b" \Ili(xn)] d)_(n
n={ o
(23)
‘H .1‘ " f—— "
Pty = ), [ m'¢h) [W(x Ne' t) Z(X) +
n=1 , !

" (2, NP t)\I/(x)]d_n (24)

For the rigid body mode (w, = 0), ¥_ =0 .and
Zo = C from equations (23) and (24),
Z m (1 ) Z2 (25)

n=1

P () =2 Z fm(l)W(x,'\) t) &X' . (26)

n~1 0

If the beam is assumed initially at rest and un-
deformed, we have

z(xn, 0 =0
2(x0, 0) = 0
(27
$(X, 0) = 0
zZ)(xn, 0) = 0.

Consequently, the initial conditions for d)i are

$,(00 = -P.(0)/m

(28)

$,(0) = - P (0)/m, .

i=0,1,2,...

Finally, equation (22) may be solved by standard pro-
cedures.
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NONLINEAR VIBRATION OF BEAMS ' - o

by

Frank C, Liu

TUN65-24133

This paper deals with vibration of uniform beams
with large amplitude. Two sets of system of nonlinear
partial differential equations of two variables are de-
rived in Ref. 1 for the vibratory motions of a beam,
One set treats beams with axially fixed ends; the other
concerns heams free of axial constraints, The linear
parts of the beamequation in both cases are the Tim-
oshenko type, while the nonlinear terms are triple
product of the first and second derivatives of the dis-
placement variables.

For practical purposes, the nonlinear terms may
be regardedas small quantities; thus, an approximate
solution in the form of a power series is developed
based on Krylov-Bogoliunov's principle by using the
linear solution as a generating function: Two illustra-
tive problems, a simple supported beam and a free-
free beam, are presented with numerical examples to
show the variation of the undamped frequency with re-
spect to amplitude of vibration.

LIST OF SYMBOLS

X
Symbol Definition
A0 dimensionless amplitude of YO
a = = k'G/E
a' =1/a
b? = EI/ pAL?
A cross sectional area of beam
E modulus of elasticity
G modulus of shear
hi unknown constants, equation (6)
I bending moment of inertia of beam
k' shear coefficient
L lengt.h of half-length of beam or differ-

ential operator
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_21_ [(a' +1)pw? + A (a' + 1) 28%0° + 4w? J

%[— (a' + 1) o? +x/(a - 12600 + 40P

q =

] dimensionless time variable (=bt)

t time variable

TN nonlinear period of vibration

TO linear period of vibration

8) dimensionless longitudinal displacement
(=u/L)

X coordinate along beam

Y dimensionless deflection (=y/L)

Z dimensionless transverse displacement due
to shear (=yq/L)

z =x/L

B = I/AL?

B! =(1+a")p

P mass density of beam

Subscripts "'z'" and "'s" are partial derivatives.

I. INTRODUCTION

In dealing with dynamic control problems of a
space vehicle to external disturbances in flight, it is
often required to know the precise natural frequency
of the vehicle. It is well known that the natural fre-
quency of an elastic body varies with its amplitude of
vibration; however, there have been few analytical re-
sults published. This phenomenon has little signifi-
cance when the amplitude is small. 1t is usually re-
ferred to as linear vibration and the frequency is re-
garded as constant.

The nonlinearity in transverse vibration of a uni-
form beam is mainly caused by one of three factors:




(1) large curvature of bending, (2) longitudinal ex-
. tension of the beam, and (3) large deflectionand lon-
gitudinal strain. Inderivingthe nonlinear differential
equation of beam vibration, it is desirable to reduce
the number of variables to minimum, since the com-
plicationof a nonlinear problem increases rapidly with
the number of dependentvariables. Consequently, the
author proposes that the nonlinear vibration of beams
be treated individually according to its cause of non~
linearity.

In this analysis, beam vibrations with large amp-
litude fall into two categories according to their boun-
conditions:

(1) Beam With Axially Fixed Ends:

For beam with two ends fixed axially, the
longitudinal stress caused by the large transverse dis-
placement becomes animportant factor of the nonlinear
vibration. In Ref. 1, the Lagrangian method is used
to obtain a system of differential equations in two de-
pendent variables: the transverse and longitudinal
displacement. The nonlinear terms in the differen-
tial cquations are a result [rom the nonlinear strain
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ex ox 2 (ax) used in the strain energy ex

pression.

(2) Beam Free From Axial Constraints:

The longitudinal stress due to the transverse
displacement in this caseis very small compared with
the bending and shear stresses. A system of differ-
ential equations of the transverse displacement and
displacement due to shear is formulated based on
dynamic equilibrium,

The linear parts of the beams equation of both
cases are of the Timoshenko type, i.e., rotary and
shear effect are included, and the nonlinear terms are
of triple products of the first and second derivatives
of the variables. Difference methods are generally
employed for numerical solution of partial differential
equations of second order. There has been no syste-
matic scheme, to the author's knowledge, developed
for the approximate solution of nonlinear partialdif-
ferential equations for higher order. A few papers
dealing with special nonlinear beam vibration prob-
lems have been found {5 through 8]; however, these
methods are not completely general.

In solving nonlinear ordinary differential equa-
tions, Krylov-Bogoliubov [3,4] has employed the
linear solution as generating function in expanding the

dependent as well as independent variables in power
series of a small parameter. For practical purposes,
the nonlinear terms in the nonlinear beam equations
can be regarded as sinall quantity; by the same token,
the approximate solution may be considered as the
linear solution plus some functions with a small para-
meter as their coefficients, Based on this principle,
the present method is developed.

II. EQUATION OF MOTION

The equations of vibration of a uniform beam with
large amplitude have been derived in Ref. 1 for two
cases. In Case I the beam is treated free to move
longitudinally. Consideration of dynamic equilibrium
of a beam element results in partial differential equa-
tions with the transverse displacement and the dis-
placement due to shear as unknown variables, The
beam is restrained axially at two ends of Case II
The longitudinal and transverse displacement are
taken as unknown variables of the partial differential
equations which are obtained by using Lagrangianequa-
tions. The detail of the derivation of these equations
is given in Ref. 1; here, we simply present these
equations in their final nondimensional form.

Case I. Beam With No Axial Constraints
L(Y) = uF = M(H,y) (1a)

= 2 - Y -
Hy YZ [aZZZ (38/2) YSS] a YZ YZZ ZZ, (1b)

ZZZZ - BZZSS B (a/ﬁ) ZZ T YZSS * YZZZ. (10)

Case II. Beam With Axial Constraints

L(Y) = pF = M(H,) (22)
- 13

H, = (U, YZ+2YZ)Z. (2b)

Uzz - BUss - Yz Yzz’ (2¢)

In the above equations, the subscripts z and s denote
partial derivatives with respect to the nondimensional
spatial and time variables, respectively; L and M are
partial differential operator defined as follows:

a‘ 84 8? 84
= —F - R 5 = + +a'g? -
L 9z° T 9z’ os? ost T BFT et
M= t/p-a (&2 @
= - a —_— =
B (822 as? )
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Notice that the differential equation, L(Y) =0, is
a Timoshenko beam equation, and the terms pF on the
right-hand side of equations (1a) and (2a) are the non-
linear functions. -

III. METHOD OF SOLUTION

The method of solution proposed here is based on
the assumption that the beam equations are slightly
nonlinear; in other words, the nonlinear function is a
small quantity. Hence, we may extend Krylov-
Bogoliubov's principle [3] for ordinary differential
equations to the beam equation and use the linear so-
lution as a generating function. First, we expand both
the dependent variables and the independent time vari-
able in a power series in termsof a small quantity u,

Y = Y0+uY1+[,L2Y2+... (4)

W = WO+MW1+,uZW2+... (5)
=TI 2

s _c—o(i+“h1+“h2+"')’ (6)

where W represents either Z of equation (1ic) or U of
(2c), Yi and Wi are unknown functions, and hi (i=1,
...) are unknown constants.

Substitution from equations (4) through (6) into
(1a) and (2a) results in

4
(1+ Hh1+.o») (YO+ [J.Y1+...)
2

29
- Bt (L phy ) T (Y Yyt

2777

ZZ
2 2_82
+w (L +phy+...) 5.2 (Yo+uY1+---)

o4

t p2 , 4
+a' Bcw oy (Yo +uYy+ ..

(1+ uhy+..) wF [(Y_+ pY
= + + ...

thy @ o F HY ), (W, +

+ uW1+...)]. (7)
Collecting the terms with the same power of y and

equating them to zero, weobtain from the above equa-
tion

o
[T L[YO] =0 (8a)
i - ¢ . 2
: L[Y,] =-2hy (2Y - B
# (Y4 1 O 222 Blw YOZZ’T‘T
2
+w YOTT) +F (Y, W) (8b)
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WP L[Yy] =- [4h, Y, +2(2hy +303) ¥ ]
° 2772

+8'w? [2h; Yy + (2hy + 1)) Y )
° ZZ
- w? [2h; Yy + (2hy + h}) Y ]
o TT
+ Fy (YO, Yy Wo’ Wy, hy), (8c)
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where the F's are the results of the expansion of the
nonlinear function pF,

uF[(YO+p.Y1+...), (W0+uW1+...)](1+uh1

4
o) =pF (Y, W)+ ,ﬁFz(YO, Yy, W, Wy, hy)

el . (9)

Solution of the linear differential equation (8a) for
various boundary conditions may be found in Ref. 2.
Using the linear solution for Y , the approximate so-
lution of the secondvariable Z or U can be readily ob-
tained from the following equations,

(Z) -B(Z) - (a/B(Z) =-B(Y) o+

i"zzz 1 i’ zss

(Y.) (10)
Voyzz

i=1,2,...
(Uo) —,B(UO)SS=-(YO)Z (Yo) (11a)

7.7 ZZ

(U1) 2’2 - .B(Ui) ss == (Yo)z (Y1) ”z - (YI)Z(YO) 27

(11b)

Since the effect of the homogeneous solution of the sec-
ondvariable to the transverse vibration, Y, has little
physical significance, it may be neglected for simpli-
city.

Now, the termson the right-hand side of equation
(8b) are known from the solution of equations (8a) and
(10) or (11a). Since-the left-hand sides of equations
(8a) and (8b) are identical, the natvral frequency of
Yy, i.e., the frequency of the homogeneous equations
(8b), and the frequency of Y, are equal, The condi-
tion for Y, to have a periodic solution is that the sec-
cular terms on the right-hand side of equation (8b)




must vanish, Apparently, this condition cannot be
. satisfitd for all values of z. Letting this condition be
satisfied for the fundamental mode only should yield a
useful approximationand permits the constant hy to be
determined. Hence,

i 2=
Il Fa (Ygs Wo) 08 7 15 (2) drde

hy = 1 27 - (12)

- B'w? w? : drdz
Zf f (ZYOZZZZ BwYOZZTT+wYOTT)cos Tno(z} -
(o] o

Next, solving for Y, fromequation (8b) with con-
sideration of equation (12), we find

Y, = Ajcos T +Y1p ) (13)

and in turn we solve for the second variable W,, In
the above equation, Y, is a particular solution of
equation (8b) , and the arbitrary constant A; andthe un-
known constant h, are to be determined from equation
(8c) by letting the secular terms of both the first and
second harmonic vanish simultaneously.

The amount of work necessary to carry out higher
approximationis greatly increased; however, the first
approximation is quite adequate for engineering pur-
poses. The nonlinear period of vibration is

27
TN=-—w—(1+uh1+#2h2+...). (14)

IV. EXAMPLES

A, SIMPLY SUPPORTED BEAM WITH SYMME-
TRIC MODE

Consideringa simply supported beam with the
two end supports being fixed axially, we apply the sys-

tem of differential equations given by (2). The linear
solution found in Reference 2 is
Yo = Ao COS pz cos T. (15)

Using this solutionand the boundary conditions U_= 0,
when z = 0and 1, the solution of equation (11a) is ob-
tained:

p3 A2

A
Us = B (F-pad)

sin 2p z cos® T . (16)

Note that (1) this solution is not exact - it is off by a
constant term and (2) the homogeneous solution

which represents the' longitudinal traveling stress is
omitted,

Substituting Yo and Uo from equations (15) and
(16) into equations (2b) and (9) results in

uF = u Z fmn cOs npz cosm T, (17)
m,n=1,3
where
f == @'(1/3 +n*a'p’ - m?a' gw?) |(3-n)pd
mn m
3(11-2) 2
+ ——an Bw

po= Al p¥/32(0" - gu?) .
Consequently, equation (8b) becomes
L[Yq] = - 2hg(2p* - 8" w?p? - w?) A cos pz cos T

+ Z f

cos np% cosmT. (18)
n
m,n=1,3

From the condition of periodicity of the solution Y,
that the coefficient of cost must vanish, we have, by
neglecting cos 3 pz,

' _ ! 2 2 _ 2
h = - 3(1/8 +a' P - a' pw?) (2p 3Bw). (19)
2(2p* - g w’p? - w’) Ao

Now, the solution for Y, from equations (18) and
(19) is

Y;=AjcospzcosT + Z Cn cos npz cos3r (20)
n=1,3

C, = fan/ (n*p! - 9n” B' W?p? - 9w? + 81a' Fuwt).

The arbitrary constant A; and unknown constant h, may
be determined from the second approximation which
will not be given here.

Numerical Results

To show the magnitude of g, we consider beams of
the following:

a. Solid cylindrical beam with D/L=1/10 (D =
diameter)
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g = I/AL? = (D/4L)? = t/1600 ."

b. Thin hollow cylindrical beam (neglect shell
effect) , D/L = 1/10

B = 2(D/4L)%= 1/800.

TN/T0 Vs A0

A g=1/1600 | g =1/800
1/100 1-.015 1 -.0075
1/50 1-.06 1-.03
1/25 1-.18 1-.12

Note that AO is the ratio of amplitude to half length of
the beam.

B. FREE-FREE BEAM WITH SYMMETRIC
MODE

Since the ends of a free-free beamare free of
shear force and bending moment which can be ex-
pressed conveniently by thevariables Y and Z, we use
the system of differential equations given by (1). The
mode function for symmetric mode given by Ref. 2 is

YO = m,cosT (21)

un (z) = Ao (g sin p ch gz - pshq cos pz)/ao
ao = (q sinp chq - pshq cos p) - (q sin p - pshq).

As a result of equation (21) the solution for Z, found
from equation (10) is

Zo = Ao(b1 chqz + b, cos pz) cos T, (22)
where
by = a(Bw? +q?) sin p/(q’ + pw? - a/pla_

b,

P(w’ - p’) sha/(p - pu’ +a/B)a .
The homogeneous solution of Zo is omitted.

To obtain the nonlinear function, we substitute
equations (21) and (22) into equations (2b) and (9),
then expand in series by eigenfunction expansion and

take only the fundamental mode,

uF =-M(H ) = (Kj{cosT +Kycos37)n (z), (23)
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where ' .

>
K =- R ! Vo a'
m_ 1 0f[(i/mB—man)Ho—? Hozz]no(z) dz (24)
m=1, 3
1
R =

f ni (z) dz
o

3
- _ .2 3 2
H, (2) noz (8Zo,, + 5 P ng) +ano, Mo, ko,

= a(asb, - a,by) [shqz sin pz (a,¢* chgz + a,p* cos pz)

- pa(sh? qz cos pz + ch qz sin? pz) ] +

3 9 . 2

+ 3 Bw’ (a4 qshqz - a,p sin pz)°.

ay = Aoqsinp a, = Aopshq.

Similarly, it follows from equation (12), that

1
- 1,2 oyl
hy K,/ZR { (2n,  + B - whnon dz .
This results in
L[Yy = K3no(z) cos 371. (25)
The solution for Yy may be readily written in the form

Yy = Amy(z) cos 7+ K3 (B; chqz + B, cos pz) cos 37,
(26)

where A, is an unknown constant and

1
[q4 + 98¢ w2q2 _ 90)2 (1- a'B2w2)]

B1=

1
[p! - 98'wip? - 9w? (1 - a'B2w?)]

B2=

The unknown constants A; and h, can be determined
from equation (8c).

The change of frequency of a free-free beam is
much smaller than that of a simply supported beam.
For 8 = 1/800, the values of TN/T0 vs A areas
follows:

1-.0019

A 1/10 T /T0

[0} N

A 1-.0075

o 1/5 TN/ T0
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Robert E. Lavender

SUMMARY

. ' ,
NGBS, <k 134
Results are p d fram five brief’investiga-

tions which have been conducted concerning lunar
touchdown dynamics. Theseinvestigationsconcernthe
use of a rocket motor to achieve a stable touchdown,
effectof elasticity on touchdown stability, comparison
of MSFC results with Grumman Aircraft Engineering
Corporation (GAEC) analytical results, landing dy-
namics for acryogenic landing stage, and comparison
of MSFC results with GAEC scale model drop tests.
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LUNAR TOUCHDOWN DYNAMICS STUDIES

by

Lunar slope, negative for downhill landing
Initial pitch attitude, positive nose up
Initial pitch angular rate

Coefficient of friction

I. INTRODUCTION

Crushing force of main strut
Crushing force of support strut
Landing gear diameter

Radius of gyration about c.g.

Original height of center of gravity

Load factor; total external force divided

by earth weight for vertical landing on level
surface.

Number of legs

Stabilization rocket motor thrust
Stabilization rocket motor burning time
Vertical velocity

Horizontal velocity

Rebound velocity from a vertical landing

Stroke parallel to vehicle's longitudinal axis

LIST OF SYMBOLS

Definition

In August, 1962, the George C. Marshall Space

Flight Center began a study of a Lunar Logistic Sys-

tem (LLS) basedonthe Saturn V launch vehicle. This

system was designed to "soft-land" large payloads on

the moon. Results of the study included a volume on

the touchdown dynamics aspects of the system (Ref.

1). The system was designed to land safely on lunar

slopes up to 30 degrees, but unfortunately, the landing

gear required under such a condition was large and

heavy. The results of Ref. 1 have been extended to
include vehicles with from three to six legs and vari-
ous deceleration load factors, These results, along

sented in Ref. 2.

Effective spring constant per leg parallel
to vehicle's longitudinal axis

with a description of the mathematical model, are pre-

While the method of Ref. 2 accounts for crushing

and sliding, it does not consider the effects of elastic-

ity in the vehicle's structure or the fact that the legs

are hinged to the vehicle resulting in a variable land-

scribed in Ref. 3.

ing gear diameter during the touchdown motion. A
mathematical model including these effects is de-

The author is indebted to John D.

Capps, Computation Laboratory, who has programmed
both methods for digital computation.

The purpose of the present paper is to present re-

sults of additional investigations made recently in the

II.

field of lunar touchdown dynamics.

DISCUSSION

A, USE OF STABILIZATION ROCKET MOTOR

TO OBTAIN STABLE TOUCHDOWN

Earth weight (based on g_= 9.80665 m/ s%)

The purpose of

this investigation is to obtain ad-

ditional information on stabilization rocket motor




requirements necessary to obtain a stable touchdown,
Ref. 2 shows that use of a stabilization rocket motor
is very effectivein providing a stable touchdown. Re-
sults of Fig., 9, Ref. 2, correspond to a particular
landing gear diameter and initial velocity components.
This investigation provides the rocket motor require-
ments as a function of the landing gear diameter for
several values of initial horizontal velocity,

The investigationwas conducted for a four-legged
spacecraft landing on a 30-degree lunar slope with a
horizontal velocity component in the downhill direction.
The vehicleimpacts on two uphill legs, goes into free
flight, and thenimpacts on two downhill legs. A stab-
ilization rocket motor is assumed mounted on top of
the payload and directed downward through the vehic-
le's center of gravity., The motor ignites when the
downhill legs contact the lunar surface. The same re-
sults would be obtained for a number of smaller rock-
ets mounted around the vehicle equidistant from the
center of gravity. The vehicle's attitude angle at
touchdown is considered to be less thanthe lunar slope
so that the first legs to sense contact will be the uphill
legs.

For any given landing gear diameter, there is a
minimum thrust below which the vehicle's center of
gravity will rotate over the downhill feet. This mini-
mum thrust is shown in Fig. 1 as a function of the
landing gear diameter for two values of the horizontal
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'

velocity, The correspondingburning tiine: also shown,
is essentially independent of the horizontal velocity for
the two values considered. The thrust given in Fig. 1
will reverse the vehicle's sense of rotation just as the
center of gravity becomes vertical above the point of
rotation. A higher thrust motor of constant total im-
pulse would be somewhat better from a touchdown sta-
bility standpoint. However, extremely high thrust
motors of very short burning time may present motor
development problems.

Fora horizontal velocity of 2 m/s, a landing gear
diameter to center-of-gravity height ratio of 3. 51 is
needed without any stabilization rocket motor. Using
a thrustequal to the vehicle's earth weight, this ratio
isreduced to 2. 26 resulting in a landing gear diameter
which is only 64.4 per cent as large. Some additional
reduction in landing gear diameter is obtained by using
higher thrust motors, For large logistics vehicles,
which are designed to land on steep lunar slopes, use
of a stabilization rocket motor appears to be useful in
reducing the required landing gear diameter, These
results were obtained using the method described in
Ref. 2 which does not consider elasticity effects. Ad-
ditional study of the concept of stabilization rocket
motors in conjunction with the vehicle's elastic char-
acteristics would be profitable,

B. EFFECTS OF ELASTICITY ON TOUCH~
DOWN STABILITY DURING LUNAR LAND-
ING

After the MSFC Lunar Logistics System Study
was completed, the Space Technology Laboratories
was awarded a contract, NAS8-11022, titled, '""Com-
parative Design Study of Modular Stage Concepts for
Lunar Supply Operations.' Results of the touchdown
dynamics portion of the study are included in Ref. 4.
Results of their analyses indicate that the effect of
elasticity is very important, increasing the required
landing gear diameter about 30 per cent compared to
that of Ref. 2. The method of analysis used by STL
accounts for the elasticity in the structure, but does
not consider the legs to be hinged, resultingin a vari-
able landing gear diameter during touchdown motion.

The purpose of this investigation is to determine
the effect of elasticity on touchdown stability for a
basic case using the method of Ref. 3. The discussion
is restricted to the following conditions:

W, = 177,930 N (40,000 1b)
k¥ = 17.52 m? (81 ft?)

L, = 6.32 m (249 in)

N = 4
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T

D = 20.17"'m {794 in)

L.F. = 3 - T
VV = 6 m/s

Vh = 1m/s

p = 1.0

For these conditions, the vehicle had been found
to be stable (Ref, 2) for lunar slopesup to 30degrees.
Landing is in the downhill direction with a 2-2 impact.

Results of the investigation using the method of
Ref. 3 indicate that the combined effect of elasticity
and hinged legs is compensating to the extent thatonly
about 5 per cent increase in landing gear diameter is
required over the results from Ref. 2. Using an ef-
fective vertical spring constantof 2, 452 MN/m ( 14, 000
Ib/in), the vehicle is still stable for lunar slopes up
to 27.8 degrees. Increasingthe landinggear diameter
to 22.35 m (880 in) provides stability up to 32.6 de-
grees. Therefore, a diameter of about 21, 13 m (832
in) will provide stability on slopes up to 30 degrees.
This diameter is only 4.8 per cent larger than the re-
sults from Ref. 2.

C. COMPARISON OF MSFC AND GAEC
TOUCHDOWN STABILITY ANALYTICAL
RESULTS

This investigation compares some results of
touchdown stability obtained by the Grumman Aircraft
Engineering Corp. (Ref. 5) with results using an
MSFCprogram (Ref. 3). Such comparisons serve to
indicate the extent of agreement or disagreement be-
tween different approaches to the touchdown dynamics
problem. Results presentedin Ref. 5include stability
boundaries for a series of configurations with various
landing gear diameters, height of the center of gravity,
and number of legs. Results using Ref. 3 have been
obtained for only one configuration. The configuration
chosen for comparison has the following characteris-
tics:

W, = 44,482 N (10,0001b)
k2 = 2.69 m? (28,95 ft?)
L, = 3.30m (130 in)

D = 8.84m (348 in)

N = 4,

82

The load factor, in earth g's, experiénced upon land-
ing vertically on a level surface depends upon the co-
efficient of friction between the foot pads and lunar
surface, For the configuration chosen, GAEC shows
the load factor to vary from 5.6 for zero friction to
16. 4fora coefficient of frictionof 1, 0. The maximum
load factor is obtained when both upper and lower leg
members are stroking in compression.,

Values were chosen for the crushing strength of
the honeycomb crushable material in the upper and
lower leg members of the two-dimensional model of
Ref. 3 such that the load factors given in the above
paragraphwere obtained. In addition, it was assumed
that the upper and lower leg members of the two-
dimensional model have elastic deflection of one inch
before crushing takes place.

During a symmetrical landing (vertical landing
on a level surface) with zero friction, the foot pads
slide outwardwith the upper leg members ineompres—
sionand the lower leg members in tension, The ver-
tical stroke (parallel to the vehicle's centerline),
which exists at the moment crushing begins, together
with the normal force acting on the foot pads, deter-
mines the effective vertical spring constant for each
leg. When the vertical landing velocity is reduced to
zero, the foot pads begin to slide inward reducing the
compression load in the upper leg members and the
tension load of the lower members, The vehicle be-
gins a rebound motion and lifts off the surface as the
normal force on eachfoot pad reduces to zero. During
a symmetrical landingwith high friction, the foot pads
remain stationary with both upper and lower leg mem-
bers compressing elastically until the crushing
strengths of the honeycomb material are reached. The
vehicle rebounds as the elastic energy stored in com-
pression is released.

Results of the symmetrical landing analysis are
shownin Fig., 2. Theload factor and effective vertical
spring constant vary in such a way that the vertical
elastic stroke varies from 0, 069 m (2.7 in) for zero
friction to 0.033 m (1.3 in) for high friction. The
corresponding total vertical stroke is shown to vary
from 0.775 m (30.5in) to 0.292 m (11.5in). Itis
interesting to observe that the velocity with which the
vehicle rebounds into free flight decreases as the co-
effient of frictionincreases, until the friction is suf-
ficient to keep the feet from sliding. The rebound ve-
locity at high friction (no sliding) is larger than that
at zero friction because the energy stored in elastic
deflection is larger.

Results of the downhill landinganalysisare shown
in Fig. 3. The vehicle initially contacts the lunar
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HILL LANDING

surtace on two feetwithan initial attitude &f 5 degrees
nose up. The vehicle then rotates over and goes into
free flight. Zero friction is assumed for the uphill
contact since GAEC (Ref, 5) states that this results
in maximum initial overturning moment. Actually,
for low vertical velocity and high horizontal velocity
combinations, the uphill feet drag downhill so that
frictionwould result in higher initial overturning mo-
ment. High friction is assumed for the downhill con-
tact so that no sliding occurs. Comparisonof the sta-
bility boundaries shows that the MSFC resultis some-
what more pessimistic. This may be due tothe MSFC
assumption regarding the elastic properties for the
landing gear. It is not too clear from Ref. 5 what
GAEC assumed for the elastic characteristics. How-
ever, general agreement is shown between the two
methods.

D, TOUCHDOWN DYNAMICS FOR CRYOGENIC
LANDING STAGE

Touchdown dynamics analysis has been per-
formed to establish stability boundaries for configura-
tionsin the size andweight class for a cryogenic land-
ing stage which has been under recent study. Results
of the analysis can be usedto estimate the landing gear
diameter required for stable touchdown as influenced
by the height of the center of gravity and the elasticity
in the vehicle. A load factor of 4 was assumed for the
caseof a level landingon all four legs simultaneously.

The analysis was based upon a downhill landing
with a 2-2 impact, Walton, Herr, and Leonard (Ref.
6) have presented, however, both experimental and
analytical evidence that the 2-2 impact orientation is
not the most critical orientation. The experimental
evidence was obtained by dropping a block of aluminum
vertically (no horizontal velocity) upon an inclined
surface., The same general trend has also been es-
tablished by the Bendix Corporation from drop tests
with a dynamically scaled model (Ref. 7). However,
further drop tests by Bendixwith a horizontal velocity
in the direction of maximum slope show that the most
critical landing obtained is the 2-2 impact with maxi-
mum horizontal velocity. Additional drop tests are
planned which will obtain the effect of cross-slope
velocity, The writer is indebted to B. T. Howard
and T. L. Powers of Bellcomm for the Bendix data,

Results of the analysis for thecryogenic landing
stage using the method described in Ref. 2 are shown
in Fig. 4. The vehicle didnotgo into free flight when-~
ever crushing stopped in the uphill legs for most of
these cases. Rather, the vehicle rotated as a rigid
body until the downhill legs made contact and began
crushing. After the downhill legs stopped crushing,
the vehicle rotated as a rigid body until it became un-
stable or until the rotation was reversed and a stable
touchdown achieved. High friction was assumed
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between the pads and lunar surface resulting in essen-
tially no pad motion. For any given lunar slope, the
requiredlanding gear diameter increases withincreas-
ing height of the center of gravity, but the ratio of
diameter to height decreases.
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For a particular height of the cente:of gr.ax}ity
(3.30 m, 130 in), the effect of elasticity in the ‘vehic- -
le's structure has been obtained for three landing gear
diameters, Resultsare shown in Fig. 5 and were ob-
tained by the method of Ref. 3. The arrows shown
correspond to data from Fig. 4 which assumes essen-
tially an infinite spring constant. The lunar slope for
a stable touchdown decreases as the effective vertical
spring constant decreases,

An important consideration in the application of
the method described in Ref. 3 which does not occur
for the method of Ref. 2 is the question of the crush-
ing force of the support struts. For Fig. 5, as the
vehicle impacts on the downhill legs, both main and
support struts crush after some elastic deflection,
The crushing forces in these struts have been chosen
so that the reaction force on each pad in the plane of
motion tangent to the surface is about 0.7 times the
force normal to the surface. This selection of crush-
ing loads is merely a choice and does not represent
the optimum solution.

Using this method the vehicle did not rotate as a
rigid body about the uphill legs after crushing ceased,
but rather sprang into free flight. In the same man-
ner, there was no rotation about the downhill legs as
arigid body after crushing ceased. The vehicle sprang
back into free flight from the downhill legs. A con-
siderable number of bounces can take place on the
downhill legs before the vehicle either tumbles or a
stable touchdown assured.

As seen from Figure 5, there is serious loss in
stability as the spring constant is reduced. For ex-
ample, the method of Ref. 2 indicates that with a
diameter-to-height ratio_of 2.46 the vehicle is stable
for slopes up to 15.6 degrees. However, to achieve
this same capability using an effective vertical spring
constant of 3 MN/m (17,130 lb/in) requires a
diameter-to-height ratio of 2.92. This corresponds
to an increase in the required landing gear diameter
of 18.7 per cent. This effect has been found to beless
severe for the Lunar Logistic System where only about
5 per centincrease in diameter was indicated, as dis-
cussed in Part B. It is worth noting that the larger
vehicle (LLS) landing on a 30-degree slope went into
free flight from the uphill legs using either method of
analysis and also that a coefficient of friction of 1.0
was assumed with no crushing of the support struts.
Therefore, as the vehicle crushedon the downhill legs,
the overturning radius increased during the motion.
Finally, a word of explanation is offered for the odd
values of diameter-to-height ratio shown in Figure 5.
These curves wereoriginally obtained for landing gear
diameters of 320, 350, and 380 inches with a center-
of gravity height of 130 inches.



E. COMPARISON OF MSFC TOUCHDOWN
STABILITY ANALYTICAL RESULTS WITH
GAEC DROP TESTS

The purpose of this investigationisto compare
MSFC analytical results with GAEC scale model drop
testresults. Thewriter is indebted to Harold Benson,
MSC, for a copy of the GAEC results (Ref, 8). The
drop tests correspond to a one-sixth scale model of
an early four-legged configuration of the LEM landing
gear, The model data and corresponding full scale
values are given in Table I. The writer has adjusted
the weight, center-of-gravity location, and radius of
gyration to include the mass of the pad assemblies as
shown for the overall vehicle.

From the crushing strengths of the struts and the
geometry of the landing gear, the writer determined
that a load factor of 21 is developed during a vertical
landing whenever the friction coefficient is high enough
to prevent sliding. This corresponds to a load factor
of 3.5 for the full scale vehicle which was used in the
MSFC analytical methods. This load factor is applied
to the basic module which does notinclude the mass of
the unsprung pad assemblies. Such a landing produces
a force on each pad such that, for this vehicle, the
component of force tangent to the surfaceis 1,50 times
the component normal to the surface. However, for a
2-2 impact landing, the tangent force parallel tothe
plane of motionis reduced by the cosine of 45 degrees.
Therefore, in the application of the two-dimensional
method describedin Ref. 3, the crushing forces of the
main and support struts were determined such that the
reaction force tangent to the surface, in the plane of
motion, was about 1.06 times the normal force.

Insufficient data were available to determine the
elastic properties. For the MSFC analysis usingthe
method described in Ref, 3, elastic deflections were
assumed for the main and support struts such that the

TABLE I. MODEL AND FULL SCALE
CONFIGURATION DATA

Basic Module Data Scale Factor Full Scale Data

We: 175.13 N (39.37 1b) 216 37830 1\;(8504 13)
Kt 0.406 me (4.37 itz) 36 14.6 m (157 ft )
Lp* 0.665 m (26.2 in) 6 3.99 m (157 in)

D : 1.197 m (47.12 in) 6 7.183 m (282. 8 in)
Cpn: 623 N (140 1b) 36 22420 N (5040 1b)
Cs: 623 N (140 1b) 36 22420 N (5040 Lb)

Pad Assemblies (Unsprung Mass)

We: 27.27 N (6.13 b) 216 5890 N (1324 1b)

Overall Vehicle

We: 202.4 N (45. 50 lb) 216 43,720 1\12(9828 1b)2
2

. o0.427 m’ (4.60 ft ) 36 15.38 m ({165.6 ft )

L, 0.577 m (22.7 in) 6 3.46 m (136 in)

effective vertical spring constant per lég was 4,90
MN/m (28,000 1b/in) for the full scale vehicle.

Results of the MSFC analytical analyses and the
GAEC drop tests are shownin Fig. 6, Sincethe GAEC
model was a one-sixth scale vehicle, the experimental
velocity profile obtained applies directly (velocity
scale factor of unity) to the full scale vehiclelanding
on the moon. The test model pads were equipped with
small prongs to simulate a restrained condition on all
pads. A large coefficient of friction was assumed for
the analytical analyses. Using the method described
in Ref. 2, which does not consider elasticity effects,
the analytical resultsare somewhat optimistic. Using
the method of Ref. 3, theanalytical results are in gen-
eral agreement with the experimental data but are
more nonlinear.
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FIGURE 6. COMPARISON OF ANALYTICAL AND
EXPERIMENTAL RESULTS
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A TOPOGRAPHICAL STUDY OF THE F, REGION OF THE IONOSPHERE ' '

by

W. T. Roberts

a

nd

: L. G. McDonald

v

SUMMARY

N65-24135

Several aspects of the F, layer-(the region of
highest electrondensity) of the ionosphere are inves-
tigated, Contour maps of constant critical frequency
of the F, peak, and height of the F,layerover the earth
reveal a seasonal variabilitywhich may be predictable.
The preliminary study shows that further work is nec-
essary in this area and that diurnal, as well as solar
cycle variations, must be established. "g

I. INTRODUCTION

Of the many problems encountered in the orbiting
of space vehicles, one of the most difficult is deter-
mining the atmospheric drag effects. One aspect of
this problem is the question of how coulomb drag
forces affect the vehicle. One of the first steps in re-
solving this problem is to determine the number of ions
above the earth's surface and how they vary season-
ally, diurnally, and with the solar cycle. The Space
Environment Group , Aerv-Astrodynamics Labora-
tory, is carrying out a study of the electron density
(and therefore the supposedion content) of the F, peak
of the ionosphere, as well as the height variabilities
involved.

The purpose of this study is to determine global
regions of high electron content, and toattempt to es-
tablish patterns for these points. The parameters
being studiedare f F,,the maximum plasma frequency
which can be reflgcted from the ionosphere, and h'F,
the height atwhichthis frequency is reflected. Monthly
average values of the critical frequency of the F, peak,
f F,, andassociated height data, h'F, reported by the
participating stations in the Annalsof the International
Geophysical Year, were used in this analysis [1].

II. METHOD OF STUDY

About one hundred and twenty stations scattered
throughout the world supplied data on ionsopheric pa-
rameters during the IGY. A value of either f  F, or
h'F for 1800 GMT was plotted at the geographical lo-
cationof the stationon a graph of latitude versuslong-
itudc. On these graphs, isometric lines of either
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constant frequency or height were drawn. The result-
ing graphs show the rough variation in the monthly
average value of the parameter over the globe. It is
obvious that such a method does not allow an examina-
tion of the fine structure. The fine structure in the
ionosphere either may be averaged out over amonth's
time, orisnot detectable between the widely scattered
points on the graph. There are places on the graph
where several stations are located in the same general
area, and at these points the contours become more
complex. One example of such a place is around 50°
Nlatitude and 10° E longitude. Inseveral of the graphs,
"kinks' are noticed in the otherwise smooth contours
at this point. This comes from trying to follow the
micro-patterns resulting from stations in near proxi-
mity.

Figures 1 through 8 are contours of either con-
stant frequency or height for the months of March,
June, September, and December, 1958. These months
are normally selected for studies, since March and
September are months of equinox and June and Decem-
ber are the solstice months.

The frequency contours represent electron densi-
ties at the F, peak of the ionosphere by the relation

N

1,24 x 104 £,

where N is in electrons per cubic centimeter and f is
the reflected frequency in megacycles per second.
This equation neglects electron collision damping, but
isawhollyacceptable approximation. Electron densi-
ties are measured by generating a sweep frequency
radio wave vertically into the ionosphere. The time
delayis a measure of the height, and the frequency is
a measure of the electron content at that height, As
the frequency is increased, the wave penetrates higher
into the ionosphere, until at a certain frequency a fur-
ther increase in frequency produces no reflection from
the ionosphere. This simply means that the maximum
electron content has been reached at this point, and the
signal is passing through the ionosphere into space.
The frequencyat which this phenomenon occurs is the
ionospheric parameter fo F,.
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1. DATA ANALYSIS

Figures 1 and 2 are contours of constant critical
frequency and height, respectively, of the F,layer for
the month of March 1958, It is interesting that the
contours tend to form into either high or low cells at
various geographical locations throughout the map.
Figure 1 shows that the electron density reaches a
maximum during the day as expected; however, the
increaseinelectron density in the nighttime hours be-
ginning at about 70°E around the geomagnetic equator

i t
20 00 120 4O M0 #o
. LONGITUDE (dog) £

FIGURE 1. CONTOURS OF CONSTANT FRE-
QUENCY (MEGACYCLES PER
SECOND) OF THE F, PEAK AT
1800 GMT FOR THE MONTH OF
MARCH 1958. THE HEAVY DASH-
ED LINE IS THE PROJECTED

GEOMAGNETIC EQUATOR

isnotso easily explained. In the area outside of +30°
latitude electron densities act as one might ordinarily
expect; that is, they decrease to a nighttime low. In
Figure 2 the height contours are generally lower during
the day than at night; however, one also observes the
contours of height beginning to increase around the
geomagnetic equator at about 80°E longitude.

Figure 3 represents the critical frequency of the
Fy peak during the month of June. The contours show
that at 1800 GMT the electron density begins to in-
crease around 100°E longitude, or about 00:40 LMT
whichonce againis long before sunrise. There is also
an anomalous increase in electron density at about 0°
to 40°E longitude and 5° to 25° N latitude.

1800 GMT  MARCH 1958

LATITUOE  {deg.)

LONGITUDE  (deg)

FIGURE 2. CONTOURS OF CONSTANT HEIGHT OF
THE F, PEAK AT 1800 GMT FOR THE
MONTH OF MARCH 1958. THE HEAVY
DASHED LINE IS THE PROJECTED
GEOMAGNETIC EQUATOR. HEIGHTS

ARE IN KILOMETERS.
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FIGURE 3. CONTOURS OF CONSTANT FRE-

QUENCY (MEGACYCLES PER
SECOND) OF THE F, PEAK AT
1800 GMT FOR THE MONTH OF
JUNE 1958, THE HEAVY DASHED
LINE IS THE PROJECTED GEO-
MAGNETIC EQUATOR.
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Figurt 4 is the associated graph for h'F for the
month of June. This graph indicates a much more
variable ionospheric heightstructurethan the previous
heightgraph. Thisgraphis filledwith "cells" of maxi-
mum and minimum heights. Probably the most inter-
esting of these cells are those which occur from 100°
to 180°W longitude. At about 40 degreesnorth there
is a low cell with a heightof 190 kilometers. Near the

1800 GMT JUNE (958
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FIGURE 4. CONTOURS OF CONSTANT HEIGHT OF
THE F, PEAK AT 1800 GMT FOR THE
MONTH OF JUNE 1958, THE HEAVY
DASHED LINE IS THE PROJECTED
GEOMAGNETIC EQUATOR. HEIGHTS

ARE IN KILOMETERS.

equator, there is a high cell with a central height of
310 km; and at about 70 degrees south, there is an-
other high cell witha heightof 330 kilometers. During
the night the northern hemisphere tends to have cells
with high altitudes, whereas the southern hemisphere
has predominantly cells with low altitude.

The electron density distribution for the month of
Septemberis shown in Figure 5. The highs which oc-
cur during the day tend to stretch into the night in the
northern hemisphere, but the southern hemisphere
tends to act fairly normal.

Figure 6 shows contours of constant height for this
same month, and appears to be fairly normal except
at about 10° north latitude and 30°E longitude where
there appears a very high cell dropping to a low at
about 120°E longitude.
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FIGURE 5. CONTOURS OF CONSTANT FRE-
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SECOND) OF THE F, PEAK AT
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* The low cell of f_F; which occurs at about 20° N
latitude and 70°W longitude in Figure 7 is very unusual.
This indicates that during the dayin thenorthern hem-
isphere there occurs a decrease in electron density at
this location. It is also interesting to notice the way
inwhich electron content tends to remain constant into
the night around the equator. There is even an in-
crease in electron density at about 80°E longitude,

1800 GMT DECEMBER 1958
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FIGURE 7. CONTOURS OF CONSTANT FREQUENCY
(MEGACYCLES PER SECOND) OF THE F, PEAK AT
1800 GMT FOR THE MONTH OF DECEMBER 1958.
THE HEAVY DASHED LINE IS THE PROJECTED
GEOMAGNETIC EQUATOR

Figure 8 shows the height of the F, peak during
December. The highcell whichoccurs in the northern
hemisphere during the day is unusual, and the night-
time low in the northern hemisphere with a high cell
in the nighttime southern hemisphere appears to be the
reverse of what was said of Figure 4.

In the frequency graphs the southern hemisphere
appears to be fairly consistentthroughout the year with
nighttime densities consistently lower thanthe daytime
densities, Around the equator the situation is, quite
different. In March there tends to be a buildup inelec-
tron density shortly after midnight, while in June,
September, and December, the electron density con-
tours tend to drag out into the night with little or no
change. In the northern hemisphere the contours tend
to be rather consistent above about 45 degrees, but
between 10° Nand 45° N latitude the seasonal variability
is rather difficult to understand. It is also noticeable

(800 GMT DECEMBER 1958
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FIGURE 8. CONTOURS OF CONSTANT HEIGHT OF
THE F, PEAK AT 1800 GMT FOR THE
MONTH OF DECEMBER 1958, THE
HEAVY DASHED LINE IS THE PRO-
JECTED GEOMAGNETIC EQUATOR.

HEIGHTS ARE IN KILOMETERS,

that the geomagnetic equator tends to exert an influ-
ence on the data, In the morhing hours the regions of
high electron density tend to lie south of the geomag-
netic equator, whereas in the afternoon the highs tend
to be north of the geomagnetic equator.

The height contours appear to be most complex
during the solstice months and least so around the
equinox months, Marchappears to be especially calm,
with September showing considerably more variation.
The main feature which is always present is the in-
crease in height of the F, peak just after nightfall just
northof the geomagnetic equator. Duringthe daythere
are generally low height cells except in the month of
June when a high cell occurred in the morning hours.
Generally, there appear to be nighttime low cells in
the northern hemisphere and nighttime high cells in
the southern hemisphere, except, once again, for the
month of June, when this situation is reversed.

It is apparent from the foregoing discussion that
more data are needed to make a more thorough eval-
uation of the ionospheric variations. We have looked
into the nighttime peak in height at the geomagnetic
equator and the electron density increasesafter sun-
set. These twoanomalieswill be studiedto determine
the diurnal variations which each experiences.
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IV. FUTURE PLANS

Jonosvheric data have been ordered from the World
Data Center for the International Year of the Quiet Sun.
_ These data will be analyzed in the same way as the
IGY data. They will also be compared with the IGY
data to study variations appearing in the data from
time of maximum solar activity to time of minimum
solar activity. The methods of analysis which will be
pursued in the continuationof this study will be (a) to
construct graphs for each month of the year 1958 to
study the progression of the various ''cells'" of high
and low electron densities and the associated height
contours, and (b) to construct graphs for each hour
of the day, Greenwich Mean Time, to study the diurnal
variations which occur as the sub-solar point pro-
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gresses around the globe. This will be done for edch
of the four months of March, June, Septembef, and
December.

Itis hoped that such a study program will produce
results which will aid in the refinement and optimiza-
tion of trajectory and orbital parameters required in
later missions.
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AN EVALUATION OF A TECHNIQUE FOR PREDICTING SOME INDICATORS OF SOLAR ACTIVITY

Jeanette A. Scissum

. Nés

SUMMARY

2415

Results of prediction models must be monitored
to insure that specific failure or low success areas
are detectedand corrected at the earliest possible time
in the developmental stage of the system. In this re-
port, resultsof the USAF Air Weather Service method
for predicting solar flare occurrence probabilities,
amount of 2800 MC solar noise flux, and geomagnetic
activity are comparedwith actual observations of these
parametersonthe surface of the earth. It is concluded
that the technique is successful; however, there is a
tendency toward a persistency type of prediction, a not
unusual occurrence in the formulative stage of most

prediction techniques. 7 —

and

I. INTRODUCTION ﬂ/

Authors of current publications on the properties
of the upper atmosphere have concluded from analyses
of satellite orbit perturbations and observations from
rocket-borne probes that above the level of diffusive
equilibrium, approximately 105 +5 kilometers, the
density, temperature, and molecularweight are highly
dependent upon the level of solar activity. While the
amount of ultra-violet radiation from the sun (the
energy that actually causes the changes) cannot be
measured directly on the earth's surface, there are
certainindicatorsof the level of solar activity that can
and are being measured and recorded in a systematic
manner. Theseindicatorsare the number of sunspots
visible on the solar disc, the amount of 10,7 centi-
meter solar radio noise flux, and the three-hourly geo-
magnetic activity.

Several models for computing or predicting the
temporal and spatial variability of the natural space
environment parameters (density, temperature, and
molecular weight) have been derived which are func-
tions of either the known or predicted values of these
indicators. Knownvaluesof these parameters are re-
quired in post-flight mission evaluation studies while
predicted values are required in pre-flight mission de-
termination, orbital lifetime prediction, and launch

Robert E. Smith

condition studies. Inasmuch as the natural environ-
ment parameter modelsare based on numerical values
of these indicators, highly accurate methods for pre-
dicting values of these indicators,as far in advance as
possible,are necessary.

Further, mission success is entirely dependent
upon the reliable performance of both material and
personnel in the harsh environment of outer space,
particularly, the radiation environment, and more spe-
cifically, the radiation environment during and after
a large solar flare or solar proton event. The accu-
rate and reliable prediction of these events will greatly
enhance the probability of mission success.

Prediction models, expeciallythoseinthe devel-
opmental stage, must be monitored continuously and
rigorously to insure that acceptable accuracy levels
are attained. This report presents an attempt to sub-
stantiate one methodeof predicting these solar activity
indicators.

II. DISCUSSION

Headquarters, Air Weather Service, Scott Air
Force Base, Illinois, has developed a method for pre-
dicting these various solar activity indicators. Each
day of the work week a message containing the follow-
ing information is transmitted to several using agen-
cies:

Part I: Current observations of activity on the
solar disc as reported by the High Altitude Observa-
tory at Boulder, Colorado.

Part II: Class 2 or greater solar flare and solar
proton event probabilities during the five-day period
following the day of transmission of the message.

Part III: The 2800 MC solar radio noise flux for
the day of transmissionas recordedat Ottawa, Canada,
and the predictedvalues for the three succeeding days.

Part IV: The geomagnetic index, Ay, for the day
of transmission as recorded by Ft. Monmouth, New
Jersey, and the predicted values of ap for the three
succeeding days.
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Information from these four parts of ‘the xﬁessage
for the months of March, April, and May is presented
graphically as follows.

Graph 1compares one-, two-, three-, four-, and
five-day predictions of the probability of occurrence
with actual occurrences of solar flares. There was
only one Class 2 flare during this period; it occurred
on the fourthday of a period during whichafifteen per-
cent probability of occurrence was forecast. A fifty
percent probability of occurrence was forecast for one
five-day period and, while no Class 2 or greater flare
occurred, botha Class 1 and a Class 1+ flare occurred
on the fifth day of the forecast period.
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GRAPH i. PERCENT PROBABILITY VS. ACTUAL
OCCURRENCE OF SOLAR FLARES

Graph 2 compares one-, two-, and three-day pre-
dictions with observed values of the 2800 MC solar
radio noise flux emanating from the sun. The predicted
values are generally in phase with the observed values;
however, the only major change innoise level predicted
was one, two, and three days, respectively, after the
actual dayof occurrence, indicatinga tendencytowards
a persistency or no change type of forecast.
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GRAPH 2.

PRE DICTED VS, ACTUAL 2800 MC
SOLAR RADIO NOISE FLUX

Graph 3 compares, one-, two-, and three-day
predicted values of apwith observed values of Ak' All
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PREDICTED VALUES OF a. VS, ACT-
UAL VALUES OF A

three prediction profiles show a close phase relation-
ship with the observed values; however, it is impos-
sible to determine a percentage accuracy because the
A, value reported in the message is merely an indi-
cator of the predicted a_, and there is no scale rela-
tionship on which a more definite comparison can be
based.

T

GRAPH 3.




Breaks in the data p'resented on all three graphs
are due to (1) communicationfailures duringthe early
stages of the program, and/or (2) the present concept
of operationwhereby forecasts are made only on norm-
al work days. As the data requirements increase, the
operational capability will be increased to seven days
per week.,

III. CONCLUSIONS

Table I shows that the one-day prediction is the
most accurate with the two- and three-day accuracies
usually decreasing sequentially. This resultis in gen-
eral agreement with most prediction methods in the
developmental stages,

Preliminary conclusions from this admittedly
short period are that the average overall accuracy of

- . -~

TABLE I. 2800 MC PREDICTION ACCURACY
March 1964 | April 1964 May 1964 Overall
One day 97.7% 98.5% 98.9% 98.37%
Two day 96.5% 97.8% 97.8% 97.36%
—— —— e
Three day 95.87% 98.1% 96.67% 96.82%
Month 96.7% 98.1% 97.8% 97.53%

the prediction method decreases as the time period for
which the forecast is valid increases. Further, it
must be remembered that thisverificationcovers only
a time period during which the solar activity is a very
minimum; therefore, the conclusions asto the accuracy
of the method should not be applied unreservedly to a
period of high solar activity.

This verification program is being continued and

periodic reports will be issued as the data sample in-
creases and the solar activity level increases.
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A METEOROID FLUX AND PUNCTURE MODEL FOR NEAR-EARTH AND CI‘SLUNAR‘SPAC"E

by

Charles C. Dalton

SUMMARY

N65-24137

Presented in this reportis a model for thé mean
cumulative flux of meteoroids which includes the ap-
propriate earth-shielding factor as a function of dis-
tance from the surface of the earth and which is as
accurate as present information will support. A punc-
ture model is presented forvehicles with homogeneous
metallic walls. The results can be used to determine
the no-puncture probability for particular vehicles and
missions when the relation between bumper or sand-
wich-typewall structures and the equivalent thickness
of a homogeneous metallic wall has been established,

DEFINITION OF SYMBOLS

Symbol Definition

m Meteoroid mass in grams,

Fs Meteoroid impacts per square meter of
randomly oriented surface per second of
mass equal to or greater than m

h Distance from the surface of the earth in
kilometers.

Ba Partial derivative of log Fs with respect
to log m.

Bs Value of log FS for vanishing log m.

P Meteoroid density in grams per cubic

P centimeter.

vy Meteoroid geocentric velocity in kilo-
meters per second.

\A Meteoroid velocity relative to a moving
vehicle, km per second.

pO Meteoroid crater depth in thick walls in
centimeters.

Py Wall density in grams per cubic centi-
meter.

Ht Wall hardness in Brinell units.
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Symbol Definition

Xy Angle of impact respect to the normal.

p Wall thickness in centimeters punctured
by meteoroids of mass m.

1) Meteoroid puncture flux per second per

square meter total area of a randomly
oriented surface.

I. INTRODUCTION

The meteoroid hazard to space vehicles, toequip—
ment and structures in space, and to astronauts con-
tinues to be uncertain. It is expected that better in-
formation will become available from time to time,
and consequent revision will be appropriate. A re-
lation between bumper or sandwich-type wall struc-
tures and the equivalent thickness of a homogeneous
metallic wall has been suggested by Nysmith and
Summers [1]. Although present knowledge about the
mechanics-of -materials aspects of meteoroid impact
is not adequate for some design purposes, most of the
uncertainty about the meteoroid hazard is due to the
continued inability to interpret definitively the rele-
vant astronomical and space data which have been
published during the last ten years. This contentionis
supported by the error propagation in Reference 2.
The sufficiently definitive interpretation may not be
forthcoming until after more direct and more precise
space measurements have been made.

Whipple's [3] relation between the flux of small
meteoroidsand distance from the surface of the earth,
combined with the estimates by McCracken and Dubin
[4] and by Hawkins [5] for the relation between the
fluxes of larger meteoroids near the earth and on the
moon, is used to extend Whipple's [6] flux model to
include the distance from the surface of the earth as
a parameter. The model so obtained is substituted
for the flux model in Reference 2 to find the relation
between material parameters and puncture flux. All
logarithms have been converted to base ten. Errors
on indicated values are approximately normally dis-
tributed, and probable errors are indicated. The in-
dicated numerical estimates of uncertainty were es-
tablished by the method given in Reference 2.




1. ML EOROID FLUX MODEL FOR UISLURNAR
* SPACE

With data from rocket firings, satellites, and
space probes, Whipple [3] found that the meanimpact
rate Fg on randomly oriented sl.{arfaces, including all
particles greater than mass 10 gram and adjusted
for the differing sensitivities of the equipments, varies
inversely with the 1.4 power of the distance h fromthe
surface of the earth; and that at some distance greater
than h = 10° kilometers, the impact rates approximate
those expected from calculations onthe zodiacal cloud.
Also Whipple [6], by adjusting the initial mass of the
zero-visual-magnitude meteor from 25 grams to 1
gram in Hawkins and Upton's [7] flux model based on
photographic meteors, and by introducing a near-earth
shielding factor of 1/2, found the following mean flux
model for a randomly oriented surface near the earth:

log Fs = -1.34 log m - 14,48, (1)

At the seventh meeting of the NASA Meteoroid
Technology Advisory Working Groupwhichwas heldat
Goddard Space Flight Center on June 17 and 18, 1964,
(Secretary: Mr. M. Charak, Code RV-1, OART,
NASA Headguarters, Washington, D. C.) a motion
was adopted that,for present considerations of mete-
oroid hazard near the earth, a non-segmented linear
relation between log Fg and log mwill be assumed. It
seems reasonable to apply this relationship throughout
cislunar space with the provision that both slope and
intercept canbe functions of location; i.e. ,

log FS= By logm + B3 + 1.3, (2)

where both slope 8, andintercept ;3 are independent of
m.

Briggs [8] found that zodiacal-light observations
areconsistentwith the theoretical apparent brightness
due to scattered sunlight from the steady—staté system
of particlesin the solar system under the action of the
Poynting-Robertson effect when it was assumed that
the concentration of particles with radii equal to or
greater than 50 microns is inversely proportional to
mass m at a distance of one astronomical unit from
the sun. This would correspond to .a negative unmit
value of B, in Eq. 2 along the earth's orbit but not
necessarily near the earth. Since the 50 microns
radius entailed a particle density of 0.1, Briggs' [8]
resultis with respect to meteoroidswith log m equal
to or greater than -17. 3.

Hawkins' [5] derivation from existing meteorite
data shows thatthe flux of impacts of large stone mete~
oroids onto the earth with mass equal to or greater

than specified mass in kilograms is inversely pro-
portional to the specified mass. Also Hawkins [5]
indicates that the flux of large bodies onto the moon
should be half as much as the flux onto the earth. It
seems reasonable to assume that the fluxonto the moon .
of meteoroids with mass equal to or greater than one
gram may be only 40 percent of the corresponding val-
ue onto the earth,

McCracken and Dubin [4] in a study of"Dust
Bombardment on the Lunar Surface'" stated: '"The
geocentric distance to which the high fluxes measured
near the earth apply is not known; the fluxes of small
dust particles on the moon probably fall between the
values indicated by the zodiacal light studies and the
values indicated by the direct measurements obtained
in the vicinity of the earth. The fluxes are, however,
thought to be close to those indicated by the zodiacal
light studies,' These results can be generated by
assuming that, at the moon's distance from the earth,
the values of 8, and 85 in Eq. 2 are -1 and 40 percent
of the value of 83 in Eq. 1, respectively; i.e.,

log FS=-logm— 14,58 + 1. 3. (3)

The next step toward establishing a meteoroid flux
model for cislunar space is to write Eq. 2 as an ap-
propriate function of distance hin kilometers from the
surface of the earth so that Egqs. 1 and 3 are found
when the values of log h are 2 and 5. 59, respectively.
Three approaches toward accomplishing this purpose
could be pursued: (1) a theoretical approach based
onconsiderations of particle dynamics, (2) an em-
pirical approach based on direct measurements in
space, and (3) a practicalapproach based on a con-
sideration of present limitations of both the theoreti-
cal approach and the empirical approach.

The theoretical approach toward establishing a
meteoroid flux model for cislunar space is not satis-
factory because the distributions of dynamic param-
eters have not been definitively established, and the
physical basis by which they might be established from
theoretical considerations is problematical. Velocity
information is available only from photographic and
radar meteors, and it is not yet known whether the
geocentric velocities of the smaller particles (those
which have been detected in space) tend to be higher
or lower.

The empirical approach basedon direct measure-
ments inspace is so far oniy a littie more satisfactory
than the theoretical approach because the measure-
ments (1) have been of uncertain interpretation with
respect to particle mass, (2) have been limited to
the small particles, (3) may have had considerable

97



uncertainty in the threshold of mass sensitivity from
time to time and from experiment to experiment, and
(4) have not been very well distributed throughout
cislunar space.
c k4

The practical approach inestablishing 8, and 83 in
Eq. 2 as functions of the distance h from the surface
of the earth is as follows: (1) Eq. 2 must reduce to
Egs. 1 and 3 when the values of log h are 2 and 5. 59,
respectively; (2) the partial derivative of log stith
respect to log hmust be -1. 4 when log hand log mare
2 and -9, respectively, in agreement with Whipple's
[3] empirical model; (3) log F_ is assumed to be a
continuous monotonic decreasing $unction of log h and
the rate of decrease of log Fg with respect to log his
assumed to decrease with respect to log h throughout
cislunar space. These resultsare given by the follow-
ing expressions for B, and Bs:

0.26(log h -2)

By =-[1+0.34e -0.24(log h -2)] (4)

B3 = - 0.028 (log h -2) - 14.48, (5)
which are illustrated graphically over the interval
2 < log h = 6 in Figure 1. Corresponding values for
log F by Eq. 2areillustratedin Figure 2 by a family
of curves for the followingvaluesof logm: -10, -7.5,
-5, -2.5, and 0.

III. NUMERICAL VALUES FROM REFERENCE 2
WITH SUBSTITUTE CISLUNAR FLUX
MODEL

log pp = -0, 35+0. 67 = log 0. 44+0. 67 (6)
logva=1.48t0. 13 =1log 30 +0.13 (7)
V.=V, (8)

log p, = (1/3) log (pp m/pt Ht) + (0.500 + 0.075)
log [(vc/4. 88) cos xy]+ 0.778 + 0.054  (9)

log p = log po + 0.200 £ 0.067=1log 1.59+ 0.067 (10)

Therefore, with random orientation, one obtains
the following formulas for the hazard from meteoroids
in cislunar space:

f(x,) = sin 2x, = probability density function

for x, (11)
log P, = (1/3) log (m/pth) +0.95 + 0,26 (12)
logp = (1/3) log (m/pth) + 1,15 £ 0.26 (13)
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log & = B, [og (P°p,H,) - 3.45] +p3 2.0 (14)

FIGURE 1. SLOPE B3, AND INTERCEPT B3 FOR LOG
FS_AS A LINEAR FUNCTION OF LOG m
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where ¢ i€ the phncture fluxand Pys Ht’ and p are wall
specific density, Brinell hardness, and thickness in
centimeters, respectively.

IV. ILLUSTRATION

With aluminum 2219-T87, for which the density
p, and hardness H_are 2. 82and 128, respectively, and
with the expressions for g, and g3 from Eqgs. 4 and 5
substituted into Eq. 14, oneobtains the results for log
¢ as a functionof log hwhichare illustrated in Figure
3 by a family of curves for the followingvalues of wall
thickness p: 0:001, 0.01, 0.1, and 1 centimeter.

V. CONCLUSIONS

The meteoroid hazard to space vehicles, to equip-
ment and structures inspace, and to astronauts in cis-
lunar space is not well known. The puncture flux
through specified thicknesses of aluminum 2219-T87,
as illustrated in Figure 3, is believed to be accurate
to within about two orders of magnitude probable error.

FIGURE 3. PUNCTURE FLUX ¢ OF METEOROIDS
PER SQUARE METER PER SECOND
THROUGH A RANDOMLY ORIENTED
WALL OF ALUMINUM 2219-T87 OF p
CENTIMETERS THICKNESS AT h
KILOMETERS ABOVE THE SURFACE

OF THE EARTH

In addition to the hazard from primary meteoroids,
which has been considered in this article, there may
be considerable further hazard on or very near the
moon due to secondary particles which are splattered
up from the lunar surface.
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SURFACE PROPERTIES OF TURBULENCE IN TH}:Z BOUNDARY LI.\YER

By

Dr. Hans A, Panofsky™

SUMMAR¥

N65 24138

Presented in this paper is a discussion-en wimd
variations in the surface boundary layer where the
vertical variation of stress is negligible, Relation-
ships between mean wind speed profiles, gust factors,
and standard deviations and spectra of horizontal wind
components (lateral and longitudinal) are discussed
as a function of stability and terrain conditions. /

LIST OF SYMBOLS

Symbol Definition

u* friction velocity defined by J—%—

T stress in horizontal direction due to wind

p density of air

z, roughness parameter

A% wind speed

/ height

In tase of natural logarithm

Ri Richardson Number

% standard deviation of u component of wind

Ty standard deviation of w component of wind

X, ¥, 2 coordinate system

9 standard deviation of lateral wind direction
(azimuth)

% standard deviation of vertical wind direc-
tion (elevation)

u, v, w wind components along, x, y, z axes,
respectively

n wave number

Su( n) spectral density of u-component of wind as

a function of wave number n
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Symbol Definition

Sv(n) spectral density of v-component of wind as
a function of wave number n

€ dissipation of turbulent energy

k von Karman's constant which usually has

the value 0. 4
I. INTRODUCTION

The following will describe some of the charac-
teristics of the '"surface boundary layer," defined as
the layer in which the vertical variation of stress is
negligible, Thus, the stress, or better the friction
velocity u* defined by

can be used as a parameter. It is generally derived
from the wind profile or, if available, from the cor-
relation between longitudinal and vertical wind,

Additional parameters are the roughness length,
Zgs and the Richardson number (or the ratio of height
to Monin length) which describe the relative impor-
tance of mechanical turbulence and convection, Dur-
ing high wind conditions, convection is relatively small
and the Richardson number is also small, so that the
properties observed in ''neutral" stratification are a
good approximation. Only z  and u* are then the im-
portant parameters, and once they are given, every-
thing else is well determined,

A true constant stress layer can be assumed only
over homogeneous terrain. If air has recently left
rough terrain, the stress will increase with height up
toan interface above whichis is more orless constant,
Below the interface, turbulence characteristics are
those of smooth air; above the interface, they are
those of the rough air, The typical slope of such in-
terfaces is 1/10.

% Professor of Meteorology, Pennsylvania State
University, University Park, Pennsylvania, and con-
sultant to Aero-Astrophysics "Office,
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‘Il WIND PROFILES OVER ROUGH TERRAIN

A. NEUTRAL AIR
In neutral air, the wind profile is given by

V = 2,5 u¥ lnzi (1)
(6]

where V is the wind speed and In is base of natural
log. Over uniform terrain, z_ 1is a constant which
may change intime only if the roughness changes with
time., In principle, the roughness length can be de-
termined from any set of two wind observations at two
heights in neutral air, In practice, itis better to cal-
ibrate the site by taking many tests of such observa-
tions and then treat z, as known, Then, given zy,
each wind observation allows estimation of u* by
equation (1).

B. CORRECTION FOR NONADIABATIC (DIA-
BATIC) CONDITIONS

Fordiabatic conditions, equation (1) becomes

V = 2.5u* In = - ¥ (Ri), (2)
2o

where ¥ (Ri) is a universal function of Richardson
number Ri, which is positive in unstable air and neg-
ative in stable air. It is well known in unstable air
only. Once z, is known, u* can be computed from a
wind observation, subjecttoa correction for Richard-
son number, This requires measurement of the lapse
rate, It turns out that the Richardson number can be
estimated from the lapse rate and a single wind. For
fast winds, the Richardson number correction is usu-
ally small,

In unstable air, u% is poorly determined by one
measured wind,

III, WIND PROFILE OVER NONUNIFORM TERRAIN

Over nonuniform terrain, with fast winds, a sim-
ple logarithmic profile will not fit, The lowest por-
tion will be representative of the local roughness, the
next portion to the roughness farther upstream, the
next to the roughness even farther away and so forth,

Inthe relatively simple case of a sharp change of
roughness (with uniform roughness on either side),
the profile can be approximated by two logarithmic

portions with a sharp division in between, For ex-
ample, if the local roughness (at the site 8f measure-
ment) is small, the lower part of the profile will have
a slope corresponding to small u*, The upper part
will have'a different slope reflecting the larger u* of
the ground farther upstream.

IV. STANDARD DEVIATIONS OF WIND COMPO-
NENTS

Let u, v, and w stand for the wind components in
the x, y, and z directions, the x-direction being par-
allel to the mean wind. (Rotation of the mean wind
with height in the surface layer is negligible. )

The following give standard deviations in neutral
air (to very good approximations) at many sites:

g, = 2,5 u* (3)
q, = 2,2 ux (4)
oy = 1,1 ux (5)

Using equation (1) for neutral air, we can write in-
stead:

cru/V =1,0/In zi (6)
(o]
o =0 /V=.88ln Zi (7)
(o]
o, =0, /V=.44/In —ZZ— ) ° (8)
(o]
Here ¢

and 0, are the standard deviations of wind
direction, lateral and vertical, respectively, in rad-
ians. Note that all the quantities in equations (6) -
(8) decrease upward in neutral air, but the quantities
in (3) - (5) are constants (over homogeneous terrain).
Over heterogeneous terrain, all the standard devia-
tions would increase upward if the local roughness is
smooth and the roughness upstream is large. Note
also that the quantities in equations (6) - (8) are in-
dependent of wind increase with Zoe

Since frequency distributions of u, v, and w are
approximately Gaussian, equations (3) - (8) can be
used to derive gust factors., For example, a speed of
V + 2 g, would give the value exceeded 2.5 percent of
the time., The gust factor would be 1 + 2.5 ¥V = 1 +
2/1n z_z .

o
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Equations (3) - (8) must be corrected for non-
zero Richardson nulber, corrections which are small
in strong winds over rough terrain, First, equations
(3) - (5) must be corrected. The correction is very
small for o,. The o, equation might double in un-
stable air; for o, the maximum correction is about
1.5. If we then proceed to equations (6) - (8), 2
further correction is needed in that equation (2) must
be used for u* in equations (3) - (5) instead of equa-
tion (1). This gives an additional increase for the
quantities in equations (8) - (8) in unstable air,

V. SPECTRA OF THE HORIZONTAL WIND COM-
PONENTS

Of most interest here are the high frequencies
(periods of 10 seconds and less). Here, the conclu-
sions from the Kolmogorov theory of the inertial sub-
range are in good agreement with observations, In
fact, they even apply to longer periods of V.

Further, the "universal'" cdnstants in these equa-
tions are now well known., We thus have

2/3 n.-2/3
ns (n) - 157 (%) / (9)
and

2/3 n.-2/3
ns (m = .19 0 (23, (10)

Here the left sides are the spectra multiplied by fre-
quency, which come out in units of velocity squared,
n is the wave number, S(n) is the spectral density as
a function of n, and ¢ is the dissipation, which under
neutral conditions is given by

€ = 2.5 u*3/kz, (11)

With equation (1), we finally have,

. 044 V8/3(z)‘2/3 n'5/3

Sy(n) = (12)
and
s,(m) = .06 V8/3(2)-2/3 n-5/3. (13)

For longer wave lengths, it will suffice to make
some general statements, The horizontal scale of
lateral velocity is almost independent of height; that
of longitudinal velocity increases slowly with height,
The low-frequency portion of the spectra is mostly
dependent on lapse rate, particularly for the lateral
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components. Infact, in neutral air, lateral 'wind corh-
ponents have negligible low-frequency energy.

VI, VERTICAL STRUCTURE OF TURBULENCE

The following is based only on tower data from
the Brookhaven National Laboratory, Upton, Long Is-
land, New York, and may not be representative of
other locations. Under unstable conditions, correla-
tion coefficients between longitudinal wind components
at different heights are approximately equal for equal
height ratios (23 and 46 m is about the same as 46 m
and 91 m), This implies that the vertical scale is ap-
proximately a linear function of height and that turbu-
lence is homogeneous on a logarithmic height scale.

For neutral conditions, a %/; scale leads to more
nearly homogeneous turbulence, suggesting that the

2
scale of turbulence varies as z /3.

Studies of cross spectra between different levels
lead to the following conclusions:

1. Eddies slope down-wind by about 45 degrees
on the average so that maximum correlation exists
for upper winds preceding lower winds,

2. Separate analysis of eddies of different size
shows that small eddies are nearly isotropic. Large
eddies are elongated horizontally, The horizontal axis
is much larger than the vertical axis in stable air,
slightly larger in neutral air, and slightly shorter than
the vertical axis, only in extremely unstable air.

3. If we are interested only in high-frequency
variations (say, horizontal wave lengths of 10 m), the
vertical wave length is about the same, Vertical cor-
relations would drop to zero after about 1/4 wave
length, and winds more than a quarter wave length
apart can be taken to be independent of each other.
Although there is not yet any proof, similar conclu-
sions are likely for lateral wind components. Only
extremely slow fluctuations of wind components would
be in phase all along the vehicle. Because of the ver-
tical elongation, eddies of the same horizontal wave
length are more vertically coherent in unstable than
in stable air. Hence, the total correlation coefficients
are also greater in unstable than in stable air. But,
as mentioned before, high-frequency variations at dif-
ferent levels tend to be fairly independent of each
other under all conditions.

Many more studies of coherence between wind
components at various heights are urgently needed.




J ' /VIL ' PRACTICAL EXAMPLE

Suppose that future measurements at Cape Ken-
nedy had established that the roughness length there,
for a certain wind direction, is 1 m. Then suppose

that the wind at 200 ft (60 meters) was 10 m/s. Then
equation (1) gives a u* of .98 m/s. Equation (6)
shows that ¢,,/V is .244, and the gust factor (for 2.5
percent exceedance) is 1.49, The spectrum estimate
in m?sec™? per unit cycle/s at a frequency of one
cycle/s comes out as 1. 32, equation (12),
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ESTIMATION IN MIXTURES OF TWC POISSON DISTRIBUTIONS ’ » Lo

By

A. Clifford Cohen, Jr.*

SUMMARY.

Techniques to resolve a mixture of two sample
distributions into their respective components have
applications in the statistical analysis of atmospheric
data. Dealt with in this report is the problem of es-
timating parameters of a mixed (compound) distribu-
tion consisting of two Poisson components. Estimators
based on the first three sample moments and estima-
tors based on the first two sample moments plus the
sample zero-frequency are considered. A computing

routine is outlined for solving the estimating equations_

involved in the latter case.

I. THE PROBABILITY FUNCTION

Let ¢ and ) designate the parameters of two
Poisson distributions that have been combined in the
proportions « and (1 - @), respectively, to form a
mixed (compound) distribution. The probability func-
tion of the resulting distribution may be written as

-A X

£ e_# X [
(=0 S+ (1-0) (1)

X! ‘

For convenience, and without any loss of generality,
we let p > A,

II. ESTIMATORS BASED ON FIRST THREE MO-

MENTS

Estimators for the parameters of this distribution
based on the first three sample moments were given
by Rider [2]. Through the use of factorial rather than
ordinary moments, the writer [1] subsequently sim-
plified Rider's original estimating equations to the
following form:

* Professor of Mathematics, University of Geor-
gia, Athens, Georgia, The research reported in this
paper was performed under NASA Contract NAS8-
11175 withthe Aero-Astrophysics Office, Aero-Astro-
dynamics Laboratory, Marshall Space Flight Center,
Huntsville, Alabama. Mr. Orvel E. Smith is the
NASA contract monitor.
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o= (X-N/(p-2),

ie-r—V[z]’ (2)
X(8%-T)-T0= gy
where
0 =u+A, and T = pr , (3)
and where

R
V[k]zleo x(x-1) ... (x—k+1)nX/n, (4)

in which R is the largest observed (sample) value of

X, Ny is the sample frequency of x, and n is the total
R

sample size; i.e., n= 2 n.. Inthe interest of a
x=0

simpler notation, X has been written in place of v[i].

On solving the last two equations of (2) simul-
taneously for T and 0, it follows that

P i _ g2
o* (V[S] xvlz])/(v[z] X9,
(5)

XO0* - v

1—,* s
[2]

where the asterisks (*) distinguish estimators from

the parameters being estimated, As shown in [1], the

required estimators of y and A follow from (3) and (5)

as

¥ =%(9* + N - aTx)
(6)
A¥ = %(9* - NO*? - 4T*) |

These estimators are recognized as the two roots of
a quadratic equation, with roots ry and ry, which may
be written as

Y2-o*Yy+ ™ =0, (7




where (*¥E v, and A ¥ ="Ty(r{ > Ty). The proportion-
ality parameter « is estimated from the first equa-
tion of (2) as oF = (x - A¥)/(u¥ - A¥),

III. ESTIMATORS BASED ON FIRST TWO MOMENTS
AND THE ZERO FREQUENCY

It is well known that the higher sample moments
are subject to appreciable sampling errors. In an
effortto improve onthe efficiency of the three-moment
estimators of the preceding section, the writer [1]
obtained the following estimating equation which is
based onthe first two sample moments and the sample
zero-frequency

-A
X - A _ no/n - € (8)
G(A) - A e—G(}\) _ e-x
in which
v - XA
2l
G(N) = =5 (9)

where n, is the sample zero-frequency. Equation (8)
can be solved for A** using standard iterative pro-
cedures, and with A** thus determined, estimators
of u and o follow as

% %

v ., - RA®*)/(x - A%%) |

n

U
[2] (10)

a** (i—?\**)/(u** _7\.**) .

The double asterisks (**) distinguish estimators of
this section from the three-moment estimators of
Section II and from the parameters being estimated.
Unfortunately, no simple procedure for solving equa-
tion (8) has been devised. However, a computer rou-
tine has been developed based on iterative procedures
described by Whittaker and Robinson [3] to solve equa-
tion (8) using as a first approximation the three-
moment estimate of A given by equation (6).

IV. COMPUTATIONAL PROCEDURES

The solution of the tramscendental estimating
equation (8) from Section III provides an interesting
illustration of iterative numerical computation tech-
niques described by Whittaker and Robinson [3]. To
facilitate its solution, the denominator of the left side
of (8) is interchanged with the numerator of the right
side, and the resulting equation becomes

X - A G(A) = A
e = (11)
no/n - e_x e_G(}\) - e_}‘

where G(A) remains as given by equation (9).

Equation (11) might be condensed to the form
L(A) = R(A) where

L(}) =—£>‘—_>\—, and R(A) = —2 A = A 4o

oG _ AT

n/n-e (]
o/

Graphs of the two functions L(A) and R(X) are
essentially as given in Figure 1.

o

FIGURE 1, L(A) AND R(A) FUNCTIONS

We begin with an initial approximation A, and
iterate toward the value A** as described by Whitta-
ker and Robinson [3, pp. 81-83]. The three-moment
estimate of A given by equation (6) of Section II pro-
vides a satisfactox_'y value for Ao+ This initial approx-
imation is substituted into the second equation of (12)
to obtain R, which is merely an abbreviated notation
for R(A,). We then solve the equation

L(A) = R (13)

o
to obtain Ay, the next approximation, This cycle is
repeated as many times as necessary to attain the de-
sired degree of accuracy. Equation (13) is itself a
transcendental equation, though somewhat simpler in
form than the original equation (11). It isamenableto
solution by the Newton-Raphson method {3, page 84-
For the ith cycle of iteration, the equation cor-

.
esponding to (13) bccomes

L(A) == =R, , (14)
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which may be written as

- 5
f(A) = 0,
where
f(A) = A, -R, e i-C,. (15)
i i i-1 i-1
and where
Ci—i = (X - R. no/n) .

Equation (14) may be readily solved using the
Newton-Raphson method, where }\i_ the (r+1)st

+
iterant to }\i, is given by r+,

= - 1
}\i:l‘+1 }\i:I‘ f( ki:r) /f (}\i:I‘) :

The first derivative of f(A;) follows from (15) as

s
' - 1
f ()\i) 1+ Ri-i e .
Accordingly,
_A._
MR -Ciy
AL =X, _ - - . (16)
i:r+l ir -
1+ Ri-i e

As an initial approximation Ai-O

usually be satisfactory to let 7\1.0 = Ai—i

Raphson iterative technique is continued through as
many cycles as may be necessary toattain the desired
accuracy in Aj, More specifically, this subroutine is
terminated at the end of the rth cycle, where this is
the first cycle for which

to Ai, it will

. The Newton-

L - R,

. <6
i:r i-1 r o

in which 6; specifies the maximum permissible abso-
lute value deviation. With Aq thus determined, we cal~

culate Rj, set up the new equation L()\Hi) = Ri and

the primary routine is continued through k cycles,
where the kth cycle is the first for which

<62)

Ly - By

where 6, specifies the maximum allowable absolute
value deviation. The required estimate of A is then

AEX = A
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V. AN ILLUSTRATIVE PKOBLEM ' .

To illustrate the application of his three-moment
estimators, Rider [2] chose an example constructed
by mixing equal proportions of two Poisson distribu-
tions with u=1.5 and A = 0,5, respectively. These
data are as follows:

x ol 1 | 2|35 |a]ls]|eln
n | 830 [e38 | 327 [137 | 49| 151 3 | 1

X

In summary, n= 2000, n; = 830, x = 0. 9995, V[g] =
1.243 and vy3)= 1.734, Direct substitution of these
values into equations (5), (6) and (7) yields the three-
moment estimates

p¥ = 1,4766563,
A% = 0,47765894,
a™ = 0.52236479,

These results differ slightly from those givenby Rider
due apparently to small round-off errors in his cal-
culations.

Estimates based onthefirst two moments and the
zerofrequency calculated with the aid of an electronic
computer, programmed in accordance with the com-
puting routine of Section IV, are

3ol

= 1,4936,
AF* = 0,4956,
a®* = 0,5049,

These estimates are in much closer agreement with
the actual populationparameters ¢ = 1.5, A = 0.5, and
o = 0.5 than the three-moment estimates, Investiga-
tions are continuing with regard to the relative ef-
ficiency of the three-moment and the two-moment plus
zero-frequency estimates, but at least, in the present
instance where a large proportion of the population is
inthe zero class, the two-moment plus zero-frequency
estimates are to be preferred,
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CHARACTERISTIC FEATURES OF SOME PERIODIC ORBITS IN THE RESTRICTED THRI‘EE—B'ODY ’PROBLF;'M

N 4 R
SUMMARY =™ = “ =« »
Presented in this report are earth-moon orbits
which, when referred to a rotating coordinate system,
return periodically to their original set of state var-
iables. Such orbits offer repeated approaches to both

earth and moon and could be used for instrumented
exploration of earth-moon space for meteoroid con-

centration, radiation belts and Othquor?
tion. 4}

I. INTRODUCTION

Characteristic features such as the period of the
orbit, time spent in the region between earth and
moon, close approach distance to the moon, and clo-
sest approach distance tothe earth vary for each fam-
ily of periodic orbits. The orbits presented in this
paper have periods of 1 to 3 months and they have at
least one perpendicular crossing of the earth-moon
line on the back side of the moon. The orbits con-
tained herein represent only a small portion of the
families of periodic orbits that are possible in the re-
stricted three body problem, and it should not be in-
ferred that these are the only orbits of interest.

ACKNOWLEDGEMENTS
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oratory who by their advice and stimulation were in-
strumental in achieving these results. The author
would alsolike to express his gratitude and apprecia-
tion to Mr. Thomas French for his help in generat-
ing and presenting the data contained in this report.

II. DISCUSSION

A, EXISTENCE

The existence of certain periodic orbits in
the restricted three-body problem has been known for
a long time, Poincare” referred to orbits which re-
duce to circles when the disturbance from the more
distant body becomes zeroas "solutions de la premiere
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sorte" [1]. These orbits can be near either of the
finite masses, but not both, Arenstorf [2] proved the
existence of periodic solutions of the so-called second
kind which are near rotating Keplerian ellipses. It is
possible for these orbits to pass close to both finite
masses, and therefore, for lunar exploration, they
are more attractive than orbits of the first kind, Or-
bits of the first and second kind exist even if one of
the bodies becomes massless, Contrary to this, there
are periodic orbits that exist only in the restricted
three-body problem proper. Inthe earth-moon sys-
tem such orbits would owe their existence to the dis-
turbance produced by the moon, This report presents
periodic orbits of the second kind and orbits that are
inherent in the restricted three-body problem proper.

B. BASIC ASSUMPTIONS

A restricted three-body model is assumed
for the earth, moon, and probe system, In this sys-
tem, the earth and moon revolve in circles in a plane
around their common center of mass (barycenter).
For this investigation, the probe's motion is restric-
ted to the plane defined by the earth-moon motion,
The equations of motion are normalized such that the
sum of the masses of the earth and moon is unity; the
constant distance between the earth and moon is unity,
and the period of the earth and moon about their com-
mon center of mass is 2m, The ratio of the mass of
the earth to the mass of the moon was assumed to be
80. 45, and for the purpose of converting from the un-
itized system to a physical system of units, the dis-
tance from the center of the earth to the center of the
moon was taken to be 385,000 km,

Orbits are geometrically represented in a rotat-
ing coordinate system (origin at the barycenter) in
which the earth and moon lie on the x-axis. In this
rotating coordinate system, periodic orbits are sym-
metric with respect to the x-axis. This symmetric
property is attributed to image properties which oc-
cur in this system, Miele's [3] "Theorem of Image
Trajectories' states that if a trajectory is possible
from earth to meon, the image reflected about the x-
axis is also possible. The image trajectory will be
traversed in the opposite sense, that is, from moon
to earth. Thus, a trajectory starting perpendicular
to the earth-moon line and crossing the earth-moon
line perpendicular at some later time will return to
the original starting position, This image property
leads one to conclude that two. perpendicular crossings




of the'eartH-moon line (x-axis) are sufficient for per-
iodicity in the restricted three-body problem. With
this in mind, orbits were started on the back side of
the moon perpendicular to the earth-moon line. This
was an arbitrary choice of starting conditions, but
they proved quite convenient. With one perpendicular
crossing assured, the problem is to isolate transits
which have a second perpendicular crossing of the
earth-moon line. In this study, the velocity magnitude
at the starting position (first perpendicular crossing)
was varied in order to perform the isolation, Com-
plete families were generated by changing the starting
position and repeating the isolation. The period of the
orbit and close approach distance to the earth vary
with the close approach distance at the moon. These
features are observed and presented for several fam-
ilies, As shown in Section III, some families contain
orbits which collide with the earth, A further increase
or decrease, as the case may be, in the starting po-
sition behind the moonproduces orbits that are retro-
grade as they approach the earth, These retrograde
orbits are neglected for the present; however, future
investigations are planned in this area and should add
insight to the general behavior of periodic orbits.

C. CLASSIFICATION

The classification of orbit families used in
this report is the same as the system used by Aren-
storf [4] and Davidson*, Categories such as ratio,
order, and class are used in distinguishing various
families of orbits, Sincethese terms will be used ex-
tensively, a brief explanation of each is in order.

Figures 1 and 2 depict a pe‘riodic orbit in a ro-

tating and a space-fixed frame of reference, respec-
tively. In the space-fixed system, the probe makes

G o<

FIGURE 1, PERIODIC ORBIT RATIO 1/2, ORDER 1,
ROTATING FRAME OF REFERENCE

* Private communication with M. C. Davidson of
the Computation Laboratory of MSFC.

FIGURE 2. PERIODIC ORBIT RATIO'1/2, ORDER
1, SPACE-FIXED FRAME OF REF-
ERENCE

two revolutionsin its orbit in the same time the moon
makes approximately one revolution in its orbit, The
major axis of the probe's orbit has been rotated
slightly due to the disturbance by the moon; therefore,
the period of the orbit is less than the period of the
moon, and the orbit is not closed in the space-fixed
frame of reference. However, the forces acting on
the probe at S, are equal to the forces acting at S;.
Thus, closure in the space-fixed frame of reference
is not necessary for periodicity in the restricted
three-body problem, If one lets m equal the number
of revolutions the moon makes while the probe has to
make k revolutions in its orbit before periodicity oc-

curs, then the ratio m/k =% is used to classify this
orbit and the period, t & 2mm,

Kepler's third law provides an estimate for min-
imum value of m/k for orbits that encompass both the

earth and moon, In the unitized coordinate system,
the period of the moon is given as P, = 2m, and the

period of the probe about the earth is P, = 2w/ a®
where a is the semimajor axis of the probe's orbit,
If the probe's orbit is to contain both masses, then

a= -;'. Under this assumption, the minimum value of

m/k is (é)% ~ .354,
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Figure 1 is an orbit of ratio -;— order 1, Orbits

with ratio will be referred to as higher

2 3 4

4’6" 8. °"" {
order orbits (second, third, fourth ...) of ratio 5.
In general, an orbit with a ratio -I-l—ni{n— is classified as

ratio m/k order n. Figures 3 and 4 show orbits of

FIGURE 3. RATIO 1/2, ORDER 2, CLASS A

FIGURE 4. RATIO 1/2, ORDER 2, CLASS B

L4 .
ratio 3 order 2. In Figure 3 the second perpendicular

crossing of the earth-moon line occurs on the back
side of the moon, Orbits with this characteristic are
designated class A. The orbit shown in Figure 4 has
the second perpendicular crossing on the front side of
the moon. This perpendicular crossing occurs after
apogee, or alternatively stated, on the descending leg
of the space-fixed orbit. Orbits of this nature will be
referenced to as class B. First order orbits are per-
iodic orbits of the second kind, but the higher order
orbits are orbits of the restricted three-body problem
proper,
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All orbits presented herein have at ledst one per-
pendicular crossing on the back side of the 'moon.
There are orbits whichdonot possess this character-
istic, but complete data on these orbits are not avail-
able at this time,

D. APPLICATIONS

A knowledge of the conditions that exist in
earth-moon space is desirable prior to manned lunar
missions., Mapping of meteoroid concentration and
radiationbelts in the region of earth-moon space could
be provided by an instrumented probe in a long-life
periodic orbit (1 year or more). Periodic orbits of-
fer repeated close approaches to both the earth and
moon and information gathered near the moon could
be easily transmitted back to earth, Certain periodic
orbits permit adequate coverage of the space traversed
by an Apollo type trajectory; therefore, in choosing
anorbit, one should consider the amount of time spent
(coverage) in the desired region.,

In the restricted three-body problem, the moon's
orbit is assumed to be circular, but in the true physi-
cal system, the ellipticity of the moon's orbit adds a
perturbative force which will requirea velocity budget
for orbit keeping, However, one can, in limited
cases, overcome this perturbation by employing per-
iodic orbits with periods that are exact multiples of
the moon's period. If the orbit shown in Figure 2 had
a period that was a multiple of the moon's period and
M, represented the position of the moon at apogee or
perigee, then S, would coincide with S, and the orbit
would be periodic even if the moon's eccentricity was
non-zero,

Periodic orbits can also be used for exploration
of outer space. If one replaces the earth-moon sys-
tem by the sun-earth system, then an orbit of ratio —3—
order 1 (Fig. 13) offers the advantage of a return
near earth at whichtime information could be relayed
to earth via low power transmission, The orbit shape
will vary slightly due to the different mass ratio of
the sun-earth system, but in general the orbit will
have the same basic features, The period of the orbit
shown in Figure 13, instead of being twice the moon's
period, would be twice the earth's period about the
sun,

III. RESULTS

Families were studied by varying the starting
position behind the moon, and the results are pre-
sented with this as the independent parameter. Closest




approach distance to the center of the earth, the per-
iod of the orbit, and percent time on the inner leg of
the orbit are presented for various families. The in-
ner leg of an orbit is defined as the part of the orbit
that lies closest to the earth-moon line and extends
from perigee at the earth to perisel at the moon and
back to perigee at the earth, The second approach
distance tothe moon is presented for the higher order
orbits, Data for orbits of ratio % order 1 are pre-
sented in Figure 5. Orbits of this family exist for
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FIGURE 5. RATIO 1/2, ORDER 1

starting positions (perpendicular crossing onthe back
side of the moon) ranging from the moon's surface
out toa radius of 89,400 km. At radii slightly greater
than 89,400 km, the orbits impact the surface of the
earth, and a further increase in the starting radius
produces retrograde orbits,

Figures 6 and 7 show data for ratio é order 2

class B, These orbits exist for starting radii between
3075 km and 57,000 km. Collision with the surface of
the earth occurs for starting radii less than 3075 km
and greater than 57,000 km, It is evident from Fig-
ure 7 that this family contains an orbit that will be
periodic even when the moon's orbit is assumed to be
elliptic.

1
Depicted in Figures 8 and 9 are data for ratio 3

order 2 class A. Collision with the surface of the
earth occurs with a starting radius of 1928 km, For
this starting radius, the second perpendiculatr cross-
ing of the earth-moon line occurs on the back side of
the moon at a distance of 132,000 km, As the start-
ing radius is continuously increased, the second per-
pendicular crossing moves in toward the moon until
the two crossings coincide, This occurs at about
15,000 km, Transits that are started beyond this
radius will have their second perpendicular crossing
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FIGURE 6. RATIO 1/2, ORDER 2, CLASS B
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FIGURE 7. RATIO 1/2, ORDER 2, CLASS B
between the moon and the starting position, and they

will be duplicates of transits that were started from a
position inside the 15,000 km limit,
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FIGURE 9. RATIO 1/2, ORDER 2, CLASS A

114

'

Data for orbits of ratio % order 3 (an'’example'is .

shown in Figure 10) are presented in Figures 11 and 12,

-
»
-
FIGURE 10. RATIO 1/2, ORDER 3
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Col‘iisfon with the earth occurs for starting radii less
than 2310 km, As seen in Figure 10, the second per-
pendicular crossing for the family occurs behind the
earth,

2
Data for orbits of ratio 3 order 1 are given in

Figures 13 and 14, These orbits can be found with
starting radiibeginning at the moon's surface and ex-
tending out to 183, 000 km.

FIGURE 13, RATIO 2/3, ORDER 1
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FIGURE 14, RATIO 2/3, ORDER 1

Figures 15, 16, 17, and 18 show data for orbits
of ratio % order 2 class B. At a starting radius of

51,000 km, there exists an orbit with a period of 87
(4 months),
the same starting radius for starting radii near 1994

This family contains two solutions for.

km and 110, 000 km; however, further investigation is
necessary todetermine the.exact areas in which these
solutions exist,

RATIO 2/3, ORDER 2, CLASS B

FIGURE 15,
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FIGURE 16, RATIO 2/3, ORDER 2, CLASS B

Data for orbits of ratio g order 1 are shown in

Figures 19, 20, and 21, This family of orbits exists
for starting radii between 7800 km and 19,800 km,
Beyond these limits the orbits collide with the surface
of the earth,
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FIGURE 19, RATIO 2/5, ORDER 1
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Information for orbits of ratio % order 1 is given
24,2 = 6

o.ok 0 o in Figures 22, 23, and 24, Members of this fam-
0 20 0 60 80 100 20 ily were found for starting radii from 3187 km to
Starting Position Behind the Moon (10% km) 74,026 km, Two solutions were found for each start-
ing position, and the alternate solution (the solution
FIGURE 18. RATIO 2/3, ORDER 2, CLASS B with the highest velocity) is denoted by an asterisk.
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FIGURE 22, RATIO 3/5, ORDER 1

Data are given in Figures 25, 26 and 27, The veloc-
ity difference between two orbits starting from the
same radius at the moon varied from 6.4 m/s to 38. 4
m/s.

IV. CONCLUDING REMARKS

12

Periodic orbits of ratio 2 %

, and E;— have been

investigated, Higher order orbits of these ratios are
being studied as wellas different ratios; these will be
described in a later paper., To aid in mission plan-
ning, Figure 28 shows a summary of some of the orbits
which offer injection altitudes of the earth of approxi-
mately 100 nautical miles,
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FIGURE 25. RATIO 3/5, ORDER 1*
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FIGURE 28, ORBITS WITH INJECTION ALTITUDES

i naTIo

~ 100 NAUTICAL MILES

o . - \ i
! ORDER © CLASS FIRST SECOND CLONE ‘ TIME FROM ‘ TIAE ON VELOCITY o PERIOD
it ' APPROACH  APPROACH, APPROACIN  FAKTH | INNFR LFG | (SPACE-FIXED) i
| i TowaoN | To MoK ] T kAT 70 MOoN |
! : .
‘ H ihmi 1 Akl ikm ihr 1 " imosecy | rdayy
| l H ! | - — 1 —— ——
! \ i T T w !
| 12 1 ERCNTI - . 56 1 ! 17, IO 27
{ Lol i
[ i f | i ’ i .
12 2 » 1o R P T i 1o kS
| : ‘
‘ I *f : ! | i } |
1 " Bt et 1t 1 3
| ‘ i j i | | |
\ | \ \ I \
1 " 1 3 3 1 1o, 55,
f |
P + i ! | ! } \ |
28 1 : 1 al 1 . 1 o Sh0
‘ )
e ! | | !
fes ' - m .4 s 5.4
' ; ’ s
| I ' \ | 1 \
15 . \ i 1 ™ d ' 0,1
: ! i ! 1 v

Poincare”, H., Les Methodes Nouvelles de la
Mecanique Celeste”, Vol. I, p. 97,

Arenstorf, R. F., "Periodic Solutions of the Re-
stricted Three-Body Problem Representing Ana-
lytic Continuation of Keplerian Elliptic Motion,"
NASA TN D-1859, May 1963,

Miele, A,, "Theorem of Image Trajectories in
the Earth-Moon Space," Boeing Scientific Re-
search Laboratories, Flight Sciences Laboratory
Report No, 21, January 1960,

Arenstorf, R. F., "Periodic Trajectories Pas-
sing Nedr Both Masses of the Restricted Problem
of Three Bodies,'" Presented at the XIVth Inter-
national Astronautical Congress, Paris, France,
September 26 - October 1, 1963.




o RECENT DEVELOPMENTS IN THE PREDICTION OF EARTH ORBITAL SATELLITE LIFETIME
. »

H. F. Kurtz, Jr.

A, R, McNair N6
5-2414)
SUMMARY C_A
. da .
a=g = (@ap i 2 w0, v, =, 0
A brief review of the orbital lifetime prediction d CDA (1)
model currently in use at MSFC is made followed by p =E$ = fp (a, p, i, Q, w, v, ™ p)
discussion of two recent developments in lifetime
studies. The first is an extension of graphical pre-
diction charts to account for the effects of orbital in- where
clination, argument of perigee, and date of launch.
The second is a method of joint optimization of orbital a = apogee A
lifetime and payload mass placed in orbit by a given
vehicle. It is found by the latter method that signifi- P = perigee
cant increases in lifetime or payload mass may be
obtained through the selection of an o timqm elliptical i = inclination Orbital
orbit, . . > Elements
//ﬁ&é Q = right ascension of node
I. INTRODUCTION w = argument of perigee
v =true anomaly J
Forlargevehicles of the Saturn class in low earth

orbits, it becomes quite important to analyze the ef- CD = drag coefficient
fects of atmospheric drag upon the orbit both for life- Parameters
time and decay prediction in mission planning and for A = mass of vehicle of Drag

post-flight orbit determination, This paper, after a
brief review of the basic prediction model currently
inuse, presents a recent extension of a graphical pre-
diction method and discusses recent findings in joint
lifetime-payload mass optimization, The work de-
scribed was performed partially in-house and partially
by Lockheed Missiles and Space Company ( LMSC) un-
der contract NAS8-11121, and represents a continua-
tion of studies begun in 1958 (Ref., 1) and last sum-
marized in Reference 2. No attempt is made in this
papertopresenta comprehensive or detailed analysis,
but rather to summarize recent progress.

II. REVIEW OF ORBITAL LIFETIME PREDICTION
MODEL

The lifetime prediction modcl adopted is basically
a common one, in which the decay rates of the orbital
elements describing the altitude and shape of the orbit
are represented by analytic derivatives:

p = atmospheric density

Mean decay rates ;‘M and PM are obtained by in-
tegrating the equations (1) over an orbit, assuming
that the orbital elements do not change over that time
interval, Apogee and perigee are then obtained as a
function of time by integration of the equations:

dp _ Pm
da aM
and (2)
dt i
da " an,
M

The exact formulation of equations (1) and (2) is
largely a matter of choice, and varisus formulations
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are successful. The technique may vary from a rela-
tively simple one, which has been largely used in
MSFC studies (Ref. 2), to one of more sophistication
such as that developed by LMSC for the Discoverer
program (Ref. 3). The first technique neglects var-
iation of the parameters i, £, and w, and assumes a
spherical earth model, The second technique inte-
grates simple variational equations of the parameters
i, €, and w, and uses an oblate earth, The choice of
parameters used inthe formulation may also vary; for
example, semi-major axis and eccentricity may be
used instead of apogee and perigee. For many pur-
poses a simple model carefully applied yields com-
parable results to the sophisticated model.

The primary factor of uncertainty in all current
lifetime models is the atmospheric density p. Although
the drag coefficient Cpy and effective drag area A (for
unstabilized bodies) also contribute noticeably to the
uncertainty, their uncertainty is generally of lesser
magnitude and may be removed to some extent by
flight experience with similar vehicle configurations
(""calibration' by orbit determination), Various mod-
els are used to represent p, which is itself a complex
function of many parameters., The primary variables
which are of significance in the lifetime model are
(a) altitude dependence, (b) variation with solar ac-
tivity, and (c¢) 'diurnal bulge'* variation,

The approach taken in MSFC studies has been to
represent the altitude dependence by a standard model
atmosphere (e.g.,1959 ARDC) and the diurnal bulge
by an analytic multiplicative factor (Ref. 4). The
variation with solar activity has been represented by
a second multiplicative factor based upon an extrapo-
lation of the solar activity level and an estimate of its
effect upon the atmosphere.

This "solar activity" factor attempts to account
for the mean variation due to the eleven-year solar
activity cycle only, Short-period density effects such
as the 27-day solar activity cycle are of much less
importance. A typical form for this factor is dis-
cussed and shown graphically in Section III, A modi-
fied shift function based upon experience with the first
two Saturn I orbital flights is being prepared.

For long term predictions (more than a few
months in the future) substantial uncertainty exists in
the solar activity shift factor, amounting to an uncer-
tainty (~20) of +150 percent and -60 percent in pre-
dicted lifetimes., This uncertainty magnitude is borne
out by applying the prediction method to some 50 de-
cayed satellites and comparing with actual lifetimes,
The error distribution of these predictions is shown
in Figure 1,
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Probability that Ratio of Actual to Predicted Lifetime < X

FIGURE 1, ERROR DISTRIBUTION OF LIFETIME
PREDICTIONS

This uncertainty can, of course, be substantially re-
duced for post-launch predictions by using the ob~
served initial orbit decay to '"calibrate'" the atmos-
phere (actually the atmosphere - ballistic factor
product). The uncertainty can also be significantly
reduced before launch by "calibrating'' through the use
of observed decay information from past flights or
satellites still inorbit, providing a satellite at a sim-
ilar altitude is available with sufficient tracking in-
formation.

III. IMPROVEMENTS IN GRAPHICAL MODEL

For many purposes in preliminary mission stud-
ies, the use of graphical methods to predict orbital
lifetimes provides convenience, permits quick re-
sponse, and affords sufficient accuracy to make it an
efficient method. Graphs providing normalized life-
time as a function of apogee and perigee altitudes, as
shown in Figure 2, can be found many times in the
literature. Figure 2was generated by LMSC (Ref. 5).
To make an approximate lifetime prediction, the nor-
malized lifetime L' for a given orbit is read from the
graph; multiplying by the inverse ballistic factor
(M/CDA) yields the absolute lifetime estimate, L.

= t
L = L' (M/CpA)
The graphical method has been extended to permit
correction for major factors affecting the lifetime

other thanapogee and perigee. The corrected lifetime
prediction takes the form

L = [M/CpAl [L'] [f(t) 1Tf(i,w) 1.
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FIGURE 2. LIFETIME PARAMETER AS A FUNC-
TION OF ORBITAL ALTITUDE

The correction factor £(i,w), shown in Figure 3,
is a function of i, the orbital inclination, and w, the
initial argument of perigee, This factor adjusts the
predicted lifetime to account for the oblate geometri-
cal earth, which causes an effective variation in the
satellite altitude and is dependent upon the orientation
of the orbit relative to the earth equator, -The f(i,w)
function was derived numerically from many cases
computed withthe LMSC sophisticated lifetime model,
which includes the change of argument of perigee due
to the oblate earth gravitation model. The curves
shown represent average values for various orbital
altitudes, eccentricities, and ballistic factors. For
most purposes the variation of f(i,w) can be neg-
lected.

f(i,w)
1.4

1.29 Inclination i:
90°

0. 8 4

0.6
0 90 180 270 360

Argument of Perigee w (deg)

FIGURE 3, LIFETIME CORRECTION FACTOR AS A
FUNCTION OF INCLINATION AND AR~
GUMENT OF PERIGEE

The correction factor f(t) is shown in Figure 4.

f(t
0()

Perigee Altitudes = 200 km

70

Year

FIGURE 4. LIFETIME CORRECTION FACTOR AS A
FUNCTION OF DATE

This factor corrects the lifetime prediction for the
variation of atmospheric density with the eleven-year
solar activity cycle, and is based upon a semi-empir-
ical atmosphere model previously developed by LMSC
in the Discoverer program (Ref., 6). For maximum
accuracy in predicting lifetimes of longer than two
months, the mean value of f(t) over the approximate
lifetime should be used. For lifetimes of less than
two months, the value of f(t) at the initial time may
be used.
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Use of the correction factors with the normalized
lifetime curves yields accuracies of lifetime predic-
tion comparable with.that obtained by the more exact
computational model from which they were derived,
The correction factors given in Figures 3 and 4 are
referenced specifically to Figure 2 and, in general,
cannot be directly appliedto similar graphs of lifetime
versus apogee and perigee.

IV. ORBIT OPTIMIZATION

In planning the orbital altitude and eccentricity
for future satellites, it is often desired to guarantee a
specified orbital lifetime, and also maximize the pay-
load mass in orbit or, conversely, to maximize the
lifetime for a given payload. Payload mass - lifting
capabilities of the Saturn launch vehicles are derived
using calculus of variations techniques to optimize
trajectory parameters for maximum payload. This
optimization defines the apogee-perigee altitudes
achievable by the launch vehicle for different orbital
payload masses (Fig, 5).

(km) Apo- ce Altitude
10,000

=

5000

R

1000 i

7,500 |

500

15, 000 kg Pax load Mass

oo | |

100 200 Twoo YT Hon $00

Perigee Alsitude (km)
FIGURE 5., LAUNCH VEHICLE ORBITAL CAPA-
BILITY

Orbital lifetime analysis of numerous sets of such
performance data derived for Saturn launch vehicles
has yielded a common result, Selecting a given pay-
load mass, and plotting the lifetimes predicted for the
possible maximum achievable orbits, we found that
there is a specific elliptical orbit for which the orbital
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lifetime is clearly optimized (.Fig. 6) .‘ ‘The apogee/
perigee ratio which yields this best orbit appears to
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Perigee Altitude (km)
FIGURE 6. ORBITAL LIFETIME OPTIMIZATION

be dependent upon the particular set of vehicle per-
formance data, The optimum apogee-perigee com-
bination is independent of the ballistic coefficient of
the satellite, as long as a constant configuration is
considered, In analyses thus far the apogee/perigee
ratio has varied between two and four, increasing with
perigee altitude,

Some interesting results obtained for one case
which has been studied are presented. These results
illustrate an application which has been made of this
principle of an optimum orbit to yield maximum life-
time for specified vehicle performance. Other appli-
cations have also been made. The fifth Saturn I test
flight orbit was optimized for maximum lifetime. Ex-
tensive investigations have been made in defining the
orbit of the ninth Saturn I flight carrying a meteoroid
experiment,




L3

+ In'this fllustrative case, the primary concern was
maximizing payload mass for a given configuration
and a specified orbital lifetime, The orbital capability
of the launch vehicle was expressed in Figure 5 as
maximum apogee altitude which can be achieved as a
function of perigee altitude for different payload mas-
ses. The lower envelope designates the limiting case
of circular orbits. The orbital lifetime obtained for
the different masses is shown in Figure 6 as a func-
tion of perigee altitude, assuming the maximum pos-
sible apogee associated with the perigee and payload
mass. The locus of the maximum lifetime curve is
shown in Figure 7 superimposed on the performance

(*.m) Apoger Altitude
no

|

—— Payload Mass
oo \ ) \\
E X

= — Lifetime

Maximum Lifetime

iooc

500

Circular Orbits

00

Perizee Altitud:: (km)

;FIGURE 7. LOCUS OF MAXIMUM LIFETIME AND
CONTOURS OF CONSTANT LIFETIME

. data of Figure 5, with contours of constant lifetime

also indicated. The orbital lifetime varies as the pay-
load mass varies, and identical lifetimes may be ob-
tained for different payload masses with a proper se-
lection of the apogee-perigee combination,

Using these data, an optimization can be per-
formed to maximize the payload mass for any desired
lifetime, This is noted by observation of the lifetime
contour curves of Figure 7 where maximum payload
values for a given lifetime occur along the locus curve
of maximum lifetime, The amount of the gain in pay-
load mass resulting from the optimization is more
clearly seen in Figure 8. The potential percentage
gain or loss in payload mass which can be achieved
by using an elliptical rather than a circular orbit to
yield a specified lifetime is shown in Figure 8as a

-2t

(%) Payload Mass Gain
8

Maximum Gain

O Circular Orbit Reference

|
100 150 200 250
Perigee Altitude (km)

FIGURE 8. PAYLOAD MASS OPTIMIZATION
function-of perigee altitude. A clear maximum is seen
in each of the constant lifetime curves. The gain re-
alized by this optimization increases in importance as
the absolute lifetime required increases.
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A, PUBLICATIONS
MTP-AERO-64-1
January 15, 1964
LONGITUDINAL PROPELLANT VIBRATIONS
By

Larry Kiefling

ABSTRACT

A direct iteration procedure is given for calcu-
lating the natural frequency of longitudinal vibration
of propellant in a cylindrical tank with elastic walls.
Tank walls are assumed to deform under pure hoop
stress. Propellant is considered incompressible. The
mass of the tank walls and elasticity of a hemispheri-
cal end are included. Frequency data for a simple
case and the outer tanks of Saturn I, Block II vehicles
are given. These vibrationsare inthe same frequency
range as some lower bending modes for the earlier
flight times.

MT'P-AERO-64-2
January 15, 1964

HEAT AND MASS TRANSFER IN BINARY INERT GAS
FLOW FOR DISTRIBUTIONS OF TEMPERATURE
AND CONCENTRATION RENDERING THE
PROPERTIES NEARLY CONSTANT

By

Ernst W, Adams, John D, Warmbrod, C. Lee Fox,
and Robert M, Huffaker

ABSTRACT

Injection of a foreign gas into the laminar air
boundary layer is considered, The mixture properties
are arbitrary functions of temperature T and foreign
gas concentration w., Unless the properties are con-
stant, similarity transformations are valid only at the
stagnation point or for a wall at constant pressure,
Solutions of the three similarity equations are quite
cumbersome because triple iterations are involved at
the wall to satisfy three conditions at the outer edge
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of the boundary layer. A correlation formula of rig-
orous numerical solutions for qy,/qywo has been de-
rived in Reference 14 for the constant pressure case.
Here, qy, is the heat transfer in the presence of mass
transfer, whose absence is denoted by subscript o.
This correlation formula is linear in the mass trans-
fer rate p, vy, and, therefore, fails for large values
of pyVy.

A simple engineering solution method of the sim-
ilarity equations is proposed here, which gives those
points of the qw/qWo versus pyVy relationship for
which five property parameters are nearly constant
across the boundary layer. If these five conditions
are satisfied, the differential equations in similarity
variables can be uncoupled, By use of an auxiliary
graph, the momentum equation can be integrated di-
rectly as an initial value problem. This solution is
used to determine q, by quadratures. Correlation
formulas for qy are presented for both the constant
pressure and the stagnation point cases.

The five conditions on the mixture properties can
be satisfied in an approximate way for the injection of
H,0, He, or H, into air, provided dissipation effects
are sufficiently small. Comparison to the correlation
formula of Reference 14 shows very good agreement
if the Mach number Mo = 0, and some difference for
M, = 3. The results for HyO-air mixtures cover the
range of q,,/dyo values from unity to valuesas low as
0.5. Only very small injection rates are compatible
with the five conditions if He or Hy is injected into
air, The theory is worked out in this paper for the
case of constant pressure and air asthe primary flow-
ing medium,

TECHNICAL MEMORANDUM X-53008
February 18, 1964
THEORETICAL AND EXPERIMENTAL INVESTIGA-
TION OF BOUNDARY LAYER CONTROL IN LOW-
DENSITY NOZZLES BY WALL SUCTION AND
COOLING

By

M. R. Bottorff and K. W, Rogers*

ABSTRACT

*Engineering Center, University of Southern Calif,



* Presdted in this report are the results of a the-
oretical and experimental investigation of the reduc-
tion of boundary layer thickness inlow-density nozzles
by wall cooling, wall suction, and a combination of
these two. Potentially there is a twofold benefit in
reducing the thickness of the nozzle boundary layer:
(1) a possible increase in diffuser effectiveness, and
(2) a possible reduction in the amount of boundary
layer flow for a specified usable test section size, or
anincrease in the size of the usable test section for a
given nozzle mass flow, The theoretical development
starts withthe proper integral relationship for a com-
pressible laminar boundary layer. The normal veloc-
ity at the wall is allowed to be finite to include the ef-
fects of wall suction, Definitions of momentum and
displacement thicknesses whichaccount for transverse
curvature are used. The results of Iglisch, who de-
velopedan exact solution for incompressible flat plate
flow with suction, are used to estimate skin friction
coefficients, The Prandtl number is assumed to be
unity, and two-dimensional values of 6%/ are used.
An exponential velocity profile which takes wall suc-
tion into account was used to estimate boundary layer
height,

The theoretical results were checked by an ex-
periment in which a Mach number 9 - to - 11 porous
nozzle was operated at unit Reynolds numbers in the
range of 100/inch to 600/inch, Pitotpressure surveys
were used to determine the exit Mach number and
boundary layer thickness. Theoretical Mach number
predictions are shown to agree with the experimental
results to within 5 percent, and boundary layer height
predictions to within 10 percent,

Theoretical results are presented which show the
effects of suction and wall cooling at several Reynolds
numbers onnozzle diameter and uniform core size for
a given throat area and Mach number distribution. It
is concluded that the use of suction and cooling may
result in a larger test section size, but that the mer-
its of a cooled porous wall in any specific case must
be decided from an analysis of the complete wind tun-
nel system.

TECHNICAL MEMORANDUM X-53009
February 21, 1964
DIRECTIONAL WIND COMPONENT FREQUENCY
ENVELOPES, CAPE KENNEDY, FLORIDA, AT-
LANTIC MISSILE RANGE
By

Orvel E. Smith and Glenn E. Daniels

ABSTRACT

Directional Wind Component Frequency Envelopes
for Cape Kennedy, Florida, based on the "windiest
monthly period" concept, are presented in this report
for use in structural and control studies in the design
of aerospace vehicles,

TECHNICAL MEMORANDUM X-53013
February 18, 1964

TEMPERATURE MEASUREMENT INSIDE A
RAWINSONDE BALLOON

By

George T. Norwood, Jr,

ABSTRACT

Provided in this report is information concerning
a comparison of temperature inside a Rawinsonde bal-
loon and the ambient temperature, This study may be
of use to persons working with radiosonde and asso-
ciated equipment,

TECHNICAL MEMORANDUM X-53017
March 3, 1964

STABILITY ANALYSIS OF SATURN SA-5 WITH LIVE
S-IV STAGE

By

Philip J. Hays and Phil Sumrall

ABSTRACT

A control feedback stability analysis of Saturn
SA-5 during powered flight was performed for the S-I
and S-1V stages., Sloshing stability was investigated
by considering two propellant damping ( ¢g) values for
booster flight: (1) ¢g = 1/2 percent of critical damp-
ing (corresponding to wall friction), and (2) the pre-
dicted flight damping (due to the z-rings and the ac-
cordian baffles). The predicted flight damping values
were used for theS-IV flight, The sloshing instability
in the 70-inch LOX tank is caused by roll coupling,
but proper tank baffling eliminates the problem;
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therefore, no instability will occur during booster
flight until 133 seconds when the fluid leaves the last
paffle. No instability is experienced in pitch because

of the large mass in the S-IV LOX tank, which coun-.

teracts the slosh masses in the S-I stage, A slight
instability in the LH, tank exists at ignition for the
S-1V flight.

Bending mode stability wasachieved by two meth-
ods for booster flight: phase stabilization and attenu-
ation stabilization. Gain stabilization was employed
for all elastic modes in the roll and a-channels, The
¢@-channel phase stabilized the first lateral bending
mode and gain stabilized the higher modes, The elas-
tic modes in the ¢-channel were attenuated for the
S-IV flight, Stability was achieved for booster and
and S-1V flights.

TECHNICAL MEMORANDUM X-53018

March 5, 1964

SPACE RADIATIONS: A COMPILATION AND
DISCUSSION

By

W. T. Roberts

ABSTRACT

The natural radiations encountered during a space
mission will fall into one of five categories, There
will be Van Allen belts, galactic cosmic radiations,
solar winds, solar flares, and photon radiations. Each
type of radiation is examined from the point of view
of the Apollo program and the associated lunar logis-
tics vehicle, but with some comments pointing to ex-
tended missions in space, todetermine the importance
which should be assigned to each class.

TECHNICAL MEMORANDUM X-53020
March 6, 1964
SATURN V UPRATING STUDY
By
Ronald Scott, Terrell Deaton,

Ronald Toelle, and Neva Huffaker

ABSTRACT
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Presented in this report is the perform¥nce'cafa-
bility of several uprated Saturn V vehicle configura-
tions,

The configurations selected for this study repre-
sent a wide spectrum of payloads and are reflected in
moderate vehicle uprating to rather advanced vehicle
concepts.

The presentation of the relative performance be-
tween the configurations should be a valuable aid in
determining the proper steps tobe taken to uprate the
performance capability of the basic Saturn V vehicle.

Report classified (C).

TECHNICAL MEMORANDUM X-53021
March 9, 1964
DIRECTIONAL WIND COMPONENT FREQUENCY
ENVELOPES, SANTA MONICA, CALIFORNIA,
PACIFIC MISSILE RANGE
By

Orvel E. Smith and Glenn E, Daniels

ABSTRACT

Directional Wind Component Frequency Envelopes
for Santa Monica, California, based on the "windiest
monthly period" concept, are presented in this report
for use in structural and control studies in the design
of aerospace vehicles,

TECHNICAL MEMORANDUM X-53023
March 13, 1964
TERRESTRIAL ENVIRONMENT (CLIMATIC) CRI-
TERIA GUIDELINES FOR USE IN SPACE VEHICLE
DEVELOPMENT, 1964 REVISION
By

Glenn E, Daniels

ABSTRACT

Provided in this document are guidelines on prob-
able climatic extremes and probabilities-of-occurrence



of terréstridl environmental data specifically for space
vehicle and associated equipment development, The
geographic areas encompassed are the Atlantic Mis-
sile Range (Cape Kennedy, Florida) ; Huntsville, Ala-
bama; New Orleans, Louisiana; the Pacific Missile
Range (Point Mugu, California); Sacramento, Cali-
fornia; Wallops Test Range (Wallops Island, Virginia) ;
White Sands Missile Range, New Mexico; and inter-
mediate transportation areas, Therefore, this docu-
ment omits climatic extremes for world-wide opera-
tions. This is consistent with the existing philosophy
regarding the employment of large space vehicles,
since launching and testareas are relatively restrict-
ed due to the availability of facilities and real estate,

This document presents the latest available in-
formation on probable climatic extremes, and super-
sedes previous information presentedin MTP-AERO-
63-8 (Ref. 1), Where differences exist between this
document and MTP-AERO-63-8, the data presented
herein shall be employed. The information in this
document is recommended for employment in the de-
velopment of space vehicles and associated equipment,
unless otherwise stated in contract work specifica~
tions.,

TECHNICAL MEMORANDUM X-53024
March 17, 1964
PROGRESS REPORT NO. 5
SPACE FLIGHT AND GUIDANCE THEORY
By

William E, Miner
ABSTRACT

This paper contains progress reports of NASA-
sponsored studies in the areas of space flight and
guidance theory. The studies are carried on by sev-
eral universities and industrial companies. This prog-
ress report covers the period from July 18, 1963, to
December 18, 1963, The technical supervisor of the
contracts is W, E. Miner, Deputy Chief of the Astro-
dynamics and Guidance Theory Division, Aero-Astro-
dynamics Laboratory, George C.
Flight Center,

Marshall Spacc

TECHNICAL MEMORANDUM X-53026

March 18, 1964

BOOSTER PARAME TRIC DESIGN METHOD FOR
PERFORMANCE AND TRAJECTORY ANALYSIS
PART I: CONFIGURATION

By

V. Verderaime

ABSTRACT

A method is presented for mathematically de-
scribing the geometric configuration of a conventional
liquid chemical booster stage for avertically launched
spacevehicle, Geometric properties of all significant
components were derived in parametric form. Re-
sults were summarized in schematic dimensional dia-
grams for two arrangements of tanked bipropellant
fluids. These results will serve as a basis for formu-
lating mass parametric equations as required for per-
formance and trajectory analysis.

TECHNICAL MEMORANDUM X-53027
April 10, 1964

CAPE KENNEDY LOW LEVEL WIND STUDY FOR
SEPTEMBER 23 - 25, 1963

By

Carroll Hasseltine

ABSTRACT

Compared in" this report are the high winds re-
corded at Cape Kennedy, September 23 - 25, 1963,
with the previously computed 95, 99, and 99.9 per-
centile wind speeds used for design criteria at Cape
Kennedy and vicinity, Methods used in computing the
wind speeds at Cape Kennedy are explained, Data are
presented for the length of time that these percentile
wind values were exceeded, A comparison of the con-
stants describing the wind speed profiles for different
wind speeds and a comparisonof gust factors are also
presented. Some of the computed constants which best
describe the characteristics of high surface winds are
shownto differ from the constants which best describe
the entire spectrum of wind speeds.

TECHNICAL MEMORANDUM X-53029

April 6, 1964
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DYNAMIC TEST RESULTS OF SAD-6

By

Gale R. Ernsbherger

ABSTRACT

The purpose of these vibration tests is to deter-
mine the body bending and torsional dynamic behavior
of a full scale prototype of the Saturn SA-6 flight ve-
hicle, A full scale prototype was vertically suspended
in the test tower and excited by shakers mounted at
the engine gimbal planes., The vehicle's dynamic re-
sponse at various appliedforcing frequencies was re-
corded by vibration pickups. Since the Saturn is sta-
bilized and controlled by a servo loop, response
measurements are neededto properly design the con-
trol system filter circuits, thus preventing vehicle
dynamic instability, The SAD-6 vehicle was tested
for both the boost flight with the S-I booster stage and
for the S-IV powered flight withthe S-I stage removed.

TECHNICAL MEMORANDUM X-53031
April 6, 1964

SA-6 PREDICTED STANDARD TRAJECTORY AND
DISPERSION ANALYSIS

By

J. L. Crafts

ABSTRACT

Presented in this report is the standard trajectory
for SaturnI vehicle SA-6 to be flown over the Atlantic
Missile Range, Dispersion results from 2-¢ pertur-
bations and impact dispersion of the recoverable cam-
era capsules and launch escape system are also pre-
sented. The trajectory shaping and a brief vehicle
configuration description are provided. A nominal
trajectory will insert the S-IV stage and payload into
a ncar-circular orbit with a perigee and apogee of
183.1 km and 229, 4 km, respectively, This orbit has
a nominal lifetime of 4.8 days. This trajectory is
based on mass and propulsion data provided by P& VE
Laboratory. SA-6 will be the first Block II vehicle to
be flown with closed loop guidance during the burn of
the S-IV stage. This trajectory assumes the Fischer
Ellipsoid of 1960 as the reference ellipsoid.

Report classified (C).
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TECHNICAL MEMORANDUM X-53035
April 22, 1964

ON SOUND INTENSITY AND SOUND PRESSURE
LEVELS

By

Willi H. Heybey
ABSTRACT

Sound propagation through the open atmosphere is
studied at MSFC mainly for an estimate of the acous-
tical energy that sound rays sent up by static firings
and refracted back to ground level may transmit to
inhabited areas. A theoretical expression derived in
an earlier report (Ref. 1) for the volume density of
returned energy is converted into an expression for
the corresponding intensity level to accommodate it to
engineering practice. A first approximation of the
latter's relationship to the sound pressure level (as
an observable quantity) is established, The results
of the theory can thus be compared to those of field
measurements by microphones, and a basis for theo-
retical prediction is prepared.

TECHNICAL MEMORANDUM X-53036
April 22, 1964
CONTROL THEORY HANDBOOK

By

Doyle Garner
ABSTRACT

This report is writtento present under one cover,
employing a unified coordinate system and notation,
the equations of motion and the basic control theory
applicable to stability analyses for a flexible launch
vehicle,

Five of the basic control problems are discussed
to provide some background and insight in the control
of large flexible boosters moving through the earth's
atmosphere,

The control system coordinate and notations are
shown and the rigid body equations are derived for
both the pitch and yaw planes. A conventional control
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system is introduced containing a position gyro, rate
gyro, accelerometer and angle of attack meter. The
gains of the control mechanism and the vehicle pa-
rameters are related to the frequency and damping of
the rigid body. Both the '"Drift Minimum" and " Load
Minimum" control principles are developed,

The bending and slosh equations are derived by
writing the energy expressions and subsequently ap-
plying Lagrange's equation. The method of computing
bending modes and frequencies for a flexible body is
shown for both a simplified continuous mass model
and a lumped mass model,

The construction of a synthetic wind profile for
control system studies using the 95 percent or 99 per-
cent probability of occurrence wind speed profile and
the 99 percent probability of occurrence wind shear
envelope is discussed and illustrated. The method for
superimposing a gust on the synthetic wind profile is
also shown,

Block diagrams and the Laplace transform are
introduced to relate the system equations in a form
which can be studied in terms of general feedback
theory.

Several stability analysis techniques are dis-
cussed, including Routh's stability criterion, Hur-
witz's stability criterion, root locus, frequency re-
sponse methods, and Nyquist's criterion, These
techniques are applied to a vehicle containing one
bending mode, a control filter and an actuator, The
corresponding root locus plot, Bode plot, Nyquist plot
and Nichols plot are drawn,

The basic elements of anexample adaptive control
system are discussed and its corresponding block dia-
gram is shown,

The appendices contain the block diagram and
transfer functions for several sensors and engine ac-
tuator, A summary of the flexible body equations in~
cludes the effects of engine inertia, bending motion
and slosh motion and a derivation of the bending mo-
mentatany station along the vehicle longitudinal axis,

TECHNICAL MEMORANDUM X-53037
April 22, 1964

INTERPARAMETER STATISTICAL ANALYSIS OF

SURFACE WIND SPEED, TOTAL OPAQUE CLOUD

COVER, AND MAXIMUM WIND SPEED ALOFT AT
CAPE KENNEDY, FLORIDA

By

Orvel E. Smith, George C. Marshall Space Flight
Center; Lawrence E, Truppi and Harold L, Crutcher,
U. S. Weather Bureau, National Weather Records
Center, Asheville, North Carolina

ABSTRACT

Provided in this report is a monthly analysis of
the statistical relationships of surface wind, winds
aloft and total opaque cloud cover at Cape Kennedy.
These data are based on five years of record, Janu-
ary 1957 through December 1961, and represent sur-
face observations of wind speed and total opaque cloud
cover coincident with RAWIN observations of maximum
wind speeds in the 10 to 15 km~layer, Data are pre-
sented as percentage occurrence of '"go'" to '"'no go'
conditions where a favorable combination of all three
parameters as tovehicle launch criteria represents a
"go'" condition, and a combination with one or more
parameters unfavorable to vehicle launch is classified
as a '"no go'" condition, The vehicle launch criteria
have been arbitrarily chosen for the purpose of this
report.

TECHNICAL MEMORANDUM X-53038
April 27, 1964

HYPERSONIC STATIC LONGITUDINAL STABILITY
AND AXIAL FORCE CHARACTERISTICS OF THREE
SATURN IB UPPER-STAGE MODELS

By

David R. Carlson

ABSTRACT

Results of hypersonic wind tunnel tests are re-
ported and analyzed for three Saturn IB second-stage
configurations whichdiffer inlength and frustum half-
angle, The tests were performed in the Arnold En-
gineering Development Center von Karman Facility
(VKF) Tunnel E-2, and spanned a nominal Mach num-

ber range of 5 to 8,

Three purposes directedthe test program: (1) the

establishment of static aerodynamic characteristics
of the second stage; (2) the separation of effects of
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strakes, Launch Escape System, change in frustum
angle, and mission abort; (3) the qualitative determi-
nation of the flow fields about these multiple-cone-
frustum-cylinder shapes for application to future ve-
hicles. The tests extend earlier supersonic results
for the same models to the hypersonic, low-density
flow regime,

The amount of flow separation and its location
control the aerodynamic characteristics, Large
changes in axial force and stability coefficients occur
near Mach 5, at which point separated flow from the
Launch Escape System completely engulfs the Com-
mand Module, High Reynolds number, concomitant
with the use of spherical trips, reduces the volume of
separated flow and produces large differences in sta-
bility and axial force coefficients compared with the
low Reynolds number (near full-scale trajectory) re-
sults.

Strakes on the Command Module have no signifi-
cant effect, Jettison of the Launch Escape System,
or abort of the Command or Service Module, intro-
duces strong, rather sudden changes in the coeffi-
cients. Newtonian impact theory correlates well with
the data for tower-off models, where attached-flow
concepts are applicable, The degree of simulation of
flow fields and vehicle characteristics is argued., It
is concluded that the data apply very well at low angles
of attack and approximately at intermediate and high
angles of attack.

TECHNICAL MEMORANDUM X-53040
April 30, 1964

ATMOSPHERIC ENVIRONMENT FOR SATURN
(SA-5) FLIGHT TEST

By

J. W. Smith
ABSTRACT

An evaluation of atmospheric conditions during
the flight test of Saturn (SA-5) on January 29, 1964,
is presented, The general synoptic situation for the
flight area is discussed, surface observations are
presented, and upper air data, measured near launch
time by rawinsonde and rocketsonde observation, are
given, Wind and thermodynamic data are presented
graphically and compared to the Patrick Air Force
Base reference atmosphere, Atmospheric effects on
the performance of Saturn (SA-5) are listed,
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TECHNICAL MEMORANDUM X-53041 °
May 1, 1964

RIGID BODY STUDY OF CONTROL, SEPARATION,
AND LIFT-OFF FOR SA-6 VEHICLE

By

E. L. Sullivan, D, O, McNiel, and W, H. Harmon

ABSTRACT

Presented in this report is a rigid body analysis
of the dynamics of the control, separation, and lift-
off motion of the SA-6 vehicle for the predicted stand-
ard trajectory.

A headwind restriction of 27 meters per second
is imposed on the vehicle flight in order not to exceed
the 5.5 degree angle-of-attack limitation due to struc-
tural considerations. The wind restriction is a head-
wind due to the programmed 4 degree angle-of-attack
in the maximum dynamic pressure region, With this
wind restriction, the launch probability is still ap-
proximately in the 3¢ confidence level for the four
months May through August,

Under the disturbances considered in this study,
there is no collision or control problem during sepa-
ration of the S-1/S-IV stages for the predicted SA-6
flight.

The 'close" launch support equipment is not an
obstacle to the lift-off of the SA-6 vehicle under the
disturbances considered. A collision problem with
the umbilical tower does exist if control engine no, 1
should fail very early in flight; however, this occur-
rence must be considered highly improbable,

Report classified (C).

TECHNICAL MEMORANDUM X-53042
May 1, 1964

A TECHNIQUE FOR INCLUDING THE EFFECTS OF
VEHICLE PARAMETER VARIATIONS IN WIND
RESPONSE STUDIES

By
J. A. Lovingood

ABSTRACT
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A method is presented for performing vehicle
wind response studies including the effects of varia-
tions in vehicle data such as aerodynamic and mass
characteristics, These variations are combined in
such a manner as to yield a 99, 87 percent probability
value for the maximum bending moment experienced
by the vehicle whenflying througha deterministic wind
profile. A step-by-step procedure is presented for
calculating the moment and other flight dynamics pa-
rameters,

TECHNICAL MEMORANDUM X-53048
May 20, 1964

MATHEMATICAL WIND PROFILES!
PART I

By

Arnold Court, Robert R, Read,2 and
Gerald E., Abrahms

Office of the Chie_f Scientist
Lockheed-California Co.
Burbank, California

ABSTRACT

Augmented Fourier polynomials, in which con-
stant and linear terms have been added to a complex
Fourier series, appear to offer a means for repre-
senting the vertical profile of the horizontal wind ve-
locity. Reasons for selecting this function, and
methods of its computation and application, are given,
Polynomial coefficients are presented for mean
monthly winds over Cape Kennedy, Florida, and for
four consecutive soundings over Montgomery, Ala-
bama,

TECHNICAL MEMORANDUM X-~53051

May 27, 1964

1Prepared under Contract NAS-8-5380 with Aero-
Astrodynamics Laboratory, George C. Marshall
Space Flight Center, NASA, with O. E. Smith as
Technical Supervisor,

2Associate Professor of Mathematics, U. S. Navy
Postgraduate School, Monterey, and Consultant to
the Lockheed-California Company.

SATURN SA-5 POST-FLIGHT TRAJECTORY
By

Gerald R, Riddle and Michael Naumcheff

ABSTRACT

Presented in this report is the post-flight trajec-
tory for the Saturn SA-5 test flight, Trajectory de-
pendent parameters are given in earth-fixed, space-
fixed, and geographic coordinate systems, A complete
time history of the powered flight trajectory is pre-
sented at 1, 0 sec intervals from first motion through
insertion. Tables of insertion conditions and various
orbital parameters are included in a discussion of the
orbital portion of flight, A comparison between nom-
inal and actual trajectory dependent parameters is
also presented.

Report classified (C).

TECHNICAL MEMORANDUM X-53053
June 2, 1964

BOOSTER PARAMETRIC DESIGN METHOD FOR
PERFORMANCE AND TRAJECTORY ANALYSIS
PART II. PROPULSION

By

V. Verderaime

ABSTRACT

Approximate equations forlarge, liquid chemical,
rocket engine mass and space envelope are presented
in parametric form, Well known propulsion perform-
ance equations are given with modifications to admit
programming of mixture ratio shifts and throttling of
propellant mass flow rate. Parameters used in mass
and space envelope equations were nominal input de-
sign parameters in common with the propulsion per-
formance equations such that their interdependence
could be manifested in a vehicle trajectory and per-
formance optimization study. Thoughresultsarebased
on current type engines, it is expected that coeffic-
ients and exponents used may be readily modified to
define mass and size of moderately advanced rocket
engines,
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TECHNICAL MEMORANDUM X-53054
June 2, 1964

STABILITY ANALYSIS OF SATURN SA-6 WITH
RATE GYRO FOR S-IV CONTROL DAMPING

By

Philip J. Hays

ABSTRACT

A control feedback stability analysis was per-
formed on Saturn SA-6 during S-I and S-IV stage pow-
ered flight., Predicted flight damping values were
used in the sloshing stability analysis for both stages
of flight, Stability was achieved for both stages of
flight although marginal stability was observed in the
S-IV LOX tank during booster flight. The marginal
stability is dueto the interaction between the sloshing
and the vehicle structure,

Theoretical and experimental bending frequencies
were compared during booster flight using the experi-
mentally obtained structural damping. Theoretical
bending data were used for the S-IV flight with one
percent structural damping assumed.

Bending mode stability was achieved by two meth-
ods: phase stabilization and gain stabilization, Gain
stabilization was employed forall elastic modes in the
roll and ov-channels. The ¢-channel phase stabilized
the first lateral bending mode and gain stabilized the
higher modes, The elastic modes in the ¢-channel
were gain stabilized for the S-IV flight.

TECHNICAL MEMORANDUM X-53055
June 3, 1964

STUDY OF MANNED INTERPLANETARY FLY-BY
MISSIONS TO MARS AND VENUS

By
Rodney Wood, Bobby Noblitt, Archie C. Young,
and Horst F, Thomae

ABSTRACT

This report contains the resuits of an 'in depth"
mission analysis study of manned interplanetary

134

L ]

fly-by missions to Mars and Venus during the 1970'5 \

using Apollo technology and hardware wherever pos-
sible. The usual conic and impulsive velocity tech-
niques were used in this study; however, a precision
integrated fly-by trajectory to Mars during the 1975
opposition is included,

TECHNICAL MEMORANDUM X-53056
June 4, 1964

THE AERODYNAMIC CHARACTERISTICS OF
SATURN I/APOLLO VEHICLES (SA-6 AND SA-7)

By

Billy W. Nunley

ABSTRACT

Presented inthis report are the finalaerodynamic
characteristics of the Saturn/Apollo vehicles, These
data are based on wind tunnel tests of scale models,
Normal force coefficient gradient, normal force co-
efficient, center of pressure, total power-on and
power-off drag coefficient, power-on and power-off
base drag coefficient, and forebody drag coefficient
are presented for the Mach number range from 0 to
10. Local normal force coefficient distributions are
presented for various Mach numbers ranging from
0.20 to 4,96, These data are for zero angle of attack
with the exception of the gradients, which are slopes
at zero angle of attack, and the normal force coeffic-
ients, which are a function of angle of attack,

TECHNICAL MEMORANDUM X-53059

June 8, 1964

SPACE VEHICLE GUIDANCE - A BOUNDARY VALUE
FORMULATION

By

Robert W, Hunt and Robert Silber

ABSTRACT

A mathematical formulation of the problem of
guiding one stage of a space vehicle is given as a
boundary value problem in differential equations, One
approach tothe solution of this problem is to generate




* the Taylor's series expdnsion (in several variables)

about a known solution. The theoretical nature of such
solutions is discussed, and a method for numerically
computing them is presented. This method entails the
numerical integration of an associated system of dif-
ferential equations, and can be used to obtain the so-
lution to any desired degree of accuracy for points in
a region to be defined, An extension of the method to
the problem of guiding several stages of a space ve-
hicle is also given, employing fundamental composite
function theory.

TECHNICAL MEMORANDUM X-53062
June 10, 1964
AN AUTOMATED MODEL FOR PREDICTING AERO-

SPACE DENSITY BETWEEN 200 AND 60, 000 KIL-
OMETERS ABOVE THE SURFACE OF THE EARTH

By

Robert E. Smith

ABSTRACT

Described in this report is the derivation of a
computer routine for predicting the vertical distribu-
tion of aerospace density in the terrestrial space en-
vironment above the surface of the earth, Solar ac-
tivity, geomagnetic storm, diurnal heating, latitude,
and the earth's orbital eccentricity effects are in-
cluded in this model, Densities can be predicted for
any time through December 1992,

TECHNICAL MEMORANDUM X-53064

June 16, 1964

LATEST WIND ESTIMATES FROM 80 KM TO 200 KM
ALTITUDE REGION AT MID-LATITUDE

By

W. T. Roberts

ABSTRACT

The data from a total of forty rocket launches
fired specifically to determine wind characteristics
by the release of chemiluminescent trails have been

compiled and studied in an attempt to clarify seasonal
and diurnal trends in upper atmospheric winds above
80 kilometers. From a series of graphs taken at 10-
kilometer intervals, a general picture of the change
in wind vectors with height is determined.

Below 120kilometers there appears to be extreme
variation in speed and direction with very little cor-
relation with seasonortime of day discernible., Above
120 kilometers, however, the winds appear to orient
more with season, and above 150 kilometers, some
diurnal variations become apparent,

More experiments of this type, particularly in the

summer and winter months, are needed to establish
confidence in the seasonal and diurnal trends,

TECHNICAL MEMORANDUM X-53071

June 24, 1964

SA-7 PRELIMINARY PREDICTED STANDARD
TRAJECTORY

By

Jerry D. Weiler
ABSTRACT

Presented in this report is the preliminary pre-
dicted standard trajectory for SaturnI vehicle SA-7 to
be flown over the Atlantic Missile Range, The nomi-
nal impact area of the S-I booster, the recoverable
camera capsules, and launch escape system are also
presented.

Abrief discussion of the trajectory shaping and a
description of the vehicle configuration are presented.

The nominal trajectory will insert the S-IV stage
and payload into a near-circular orbit with a perigee
and apogee of 185 km and 217 km altitude, respec-
tively., The nominal lifetime of the orbit is 3, 0 days,

The final predicted standard trajectory and dis-
persion analysis will be published approximately 30

days prior to launch date,

Report classified (C).

TECHNICAL MEMORANDUM X-53072
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June 24, 1964

MULTIPLE BEAM VIBRATION ANALYSIS OF
SATURN I AND IB VEHICLES

By

Larry Kiefling

ABSTRACT

The Saturn is idealized as a system of connected
beams and the equations of motion are derived by the
use of Lagrange's equation, A method of calculating
three-dimensional deflections from the two-dimen-
sional solution is presented. A comparison is made
between theoretical results and ten modes from the
dynamic test at SA-D6 vehicle at 68 seconds flight
condition,

The multiple beam bending vibration program has
been developed for analysis of Saturn I and Saturn IB
vehicles, The vehicle is represented by a system of
nine connected beams, one beam consisting of the ve-
hicle upper stages and the center tank of the booster
and eachof the other beams consisting of anouter tank
of the booster, A vibration analysis is made on each
of these beams using a modified Stodola method. The
differential equations of motion for the system are
then derived by using Lagrange's equation.

Changes have been made to decrease the matrix
size while increasing the accuracy of the results, This
has been done by the following four measures:

i, Attachment of outer tanks to center tank by
rigid links. This permits the use of center tank co-
ordinates in describing outer tank motion, and elimi-

nates eight equations.,

2, Additionof afourth bending mode for the cen-
ter tank,

3. Additionof a second bending mode for each of
the outer tanks,

4, Addition of two degrees of freedom for longi-
tudinal propellant vibration in outer tanks,
TECHNICATL MEMORANDUM X-53118
August 28, 1964

DISTRIBUTION OF SURFACE METEOROLOGICAL
DATA FOR CAPE KENNEDY, FLORIDA

136

- « T & ’

By

J. W. Smith

ABSTRACT

Thermodynamic surface data for Cape Kennedy,
Florida, have been analyzed, and are presented
graphically in this study. The medians and extremes,
plus the cumulative percentage frequency levels of
0,135, 2,28, 15,9, 84,1, 97.72, and 99, 865 percent,
are shown for temperature, pressure, density, vapor
pressure, mixing ratio, enthalpy, refractivity, and
relative humidity, These dataare presented for hour-
ly, monthly and annual periods, and are discussed
briefly.

B. PRESENTATIONS

ON LINEARIZED SUB- AND SUPERSONIC FLOW
AROUND PULSATING AND OSCILLATING BODIES

By

Maximilian F. Platzer

The problem of steady linearized sub-and super-
sonic flow around low aspect ratio bodies at zero and
small angles of attack has been treated by M. Munk,
H. S. Tsien, R. T. Jones, G. N. Ward, M. C. Ad-
ams, W, R. Sears, F. Keune, K. Oswatitsch, M. A,
Heaslet, and H. Lomax, It is shown that in a first
approximation the flow over bodies at small angles of
attack can be replaced by the two dimensional cross-
flow only (Munk-Jones slender body theory); whereas,
for the flow around bodies at zero angle of attack, a
spatial influence has to be added. K. Oswatitsch was
able to show that the spatial influences of low aspect
ratio wings and bodies of revolution are the same for
bodies with equal cross-sectional area (Oswatitsch's
equivalence rule),

The extension of these results to not so sicuder
bodies has been obtained by M. C. Adams-W. R.
Sears, and F. Keune using two basically different
methods., M. C, Adams-W. R. Sears apply Laplace or
Fourier transforms to the linearized potential equation
with respect to x, Expansion and inversion of the ap-
propriate solution give the higher order flow terms,
This procedure is purely mathematical, F. Keune,
on the other hand, develops an elementary and phys-
ically more appealing approach to the problem by us-
ing the local source-strength, the sum of the sources
over the cross section, and the higher order moments
of these quantities.
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‘ The presenf investigation is based upon the un-
steady linearized potential equation, The time de-
pendence is assumed to be purely harmonic. The ob-
jective of this paper is the extension of Oswatitsch's
and Keune's results to the flow around pulsating and
oscillating bodies, Itisshownthatthe sub- and super-
sonic flow around low aspect ratio wings, whose skin
executes symmetric pulsations, is in a first approxi-
mation given again by two terms; namely, a cross-
flow and a spatial influence. This‘spatial influence
reduces the flow around pulsating wings to the flow
around the equivalent pulsating body of revolution.

Thus, a surprisingly simple approximation theory
for pulsating low aspect ratio bodies has been found
which may have some importance for panel flutter
problems, The range of validity of this theory can be
extended by considering also the higher order terms.
These terms can again be obtained by generalizing
either the Adams-Sears method, or the Keune method
to pulsating flow, Both methods give the same re-
sults, The interpretation after Keune is advantageous,
however, showing that the higher order terms also
consist of a generalized cross-flow and a generalized
spatial influence,

The insight gained for the pulsating body can be
extended in an elementary way to thé case of the os-
cillating body, Here, the first order approximation
is given by the cross flow only (Garrick-Miles solu-
tion); but inthe second order approximation, a spatial
influence has to be added and an equivalence rule can
be postulated also for this case,

Finally, these approximation theories are applied
to cases where exact solutions of the linearized po-
tential equation can be found, This is possibleforthe

‘infinitely long tube and ribbon exhibiting a harmonic

standing pulsation or oscillation, These solutions give
insight not only into the range of validity of the ap-
proximate theories developed in this paper, but show
also the transition to piston theory.

Presented at the German Institute of Aeronautics
and Astronautics, Aachen, Germany, on June 30, 1964,
ON LINEARIZED SUB- AND SUPERSONIC FLOW
AROUND PULSATING AND OSCILLATING BODIES
By
Maximilian F, Platzer
Presented in partial fulfillment for Ph,D. at Vi~

enna Institute of Technology, Vienna, Austria, in
February 1964,

AMPLITUDE DEPENDENT STATIC HYSTERESIS
DAMPING AS A MODEL FOR EARTH MATERIALS

By

Richard D. Rechtien

A general theory is presented for the description
of the propagational characteristics of seismic wave-
lets inearthmaterials, From the general development
of the theory, it is shown that no_linear theory can
ever predict the observed wavelet characteristics.
However, the inclusion of a near-arbitrary, high fre-
quency dissipation function in the wave equation per-
mits alinear theory to be applicable at arbitrarily low
frequencies,

The dissipation mechanism assumed operative in
the seismic range is taken to be linearly dependent on
the induced strain amplitude, This model essentially
describes the irrecoverable plastic deformation due
to local, high intensity stress at crystal boundaries.
A comparison of theoretical and experimental wavelet
behaviors is given, and the effects of nonlinearities
are discussed.

Presented in partial fulfillment for Ph,D, at
Washington University, St. Louis, Missouri, on June
12, 1964,

A SEMIEMPIRICAL DETERMINATION OF ALPHA
PARTICLE ENERGIES AND HALF-LIVES IN THE
HEAVY ELEMENT REGION

By

Barton Scott Perrine II

The parameters for a mass formula were deter-
mined by empirical methods for the region of nuclides
with N > 126 and Z > 82. By using this newly deter-
mined mass formula, alpha particle energies were
predicted for this region, With these alpha particle
energies the half-lives were found using a modifica-
tionof a relation developed by Bethe between half-life
and alpha decay energy.

The parameters associated with the liquid drop
model were not changed significantly from previous
values, However, the parameters for the correction
terms were changed enough to yield somewhat better
predictions for alpha particle energies than the older
parameters. The root-mean-square error for the
alpha particle energies was less than ,2Mev, The
errors in the predictions for the half-lives were quite
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large but these results should still be useful in deter-
mining the methods to use in looking for alpha decay
in this region,

Presented inpartial fulfillment for M, S. at Okla-
homa State University, Stillwater, Oklahoma, on May
24, 1964,

WALL PRESSURE FLUCTUATIONS AND SKIN VI-
BRATIONS WITH EMPHASIS ON FREE SHEAR
LAYERS AND OSCILLATING SHOCKS

By

Fritz R. Krause

Ever since thefailureof the first Centaur flights,
highfrequency skin vibrations have been of much con-
cern, Large wall pressure fluctuations below gepa-
rated flows and oscillating shocks lead to a dangerous
resonance excitation over the entire transonic and
supersonic portion of the flight, A new relation be-
tween pressure and force correlations has been es-
tablished for inhomogeneous turbulence in order to
account correctly for the largest pressure fluctuations
below oscillating separation and reattachment lines,
It shows that the power spectra of the generalized
forces canbe found from rigid model tests by a curve
fit of a special pressure cross correlation function,
However, a curve fit of experimental pressure cor-
relations is useful only as long as the statistical error
of a cross correlation estimate is smaller than the
numerical error of the curve fitting procedure. Non-
linear transfer functions and dynamic shifts in pres-
ently available pressure transducers and tape record-
ers are solarge that the more refined force estimates,
which consider the spatial structure of the pressure
field, might lead to ambiguous results.

Presented at the Sixty-Seventh Meeting -of the

Acoustical Society of America, New York, New York,
May 6-9, 1964,

PERFORMANCE OF THE MISTRAM TRACKING
SYSTEM AT ELEVATION ANGLES LESS THAN
FOURTEEN DEGREES

By

Max A, Horst

Presented in this paper is the cyclic and random
error buildup at low elevation angles for the MISTRAM
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tracking system. The error buildups are based’ on
actual SA-5 final tracking data, The results of a
Fourier analysis on MISTRAM velocity data are also
presented.

Presented at the MISTRAM Technical Working
Group Meeting, Cocoa Beach, Florida, on April 30,
1964,

A SURVEY OF METHODS FOR GENERATING
LIAPUNOV FUNCTIONS

By

C. C. Dearman and A, R, Lemay

The principal difficulty encountered in applying
Liapunov's second method to determine the stability
properties of nonlinear dynamical systems lies in
generating suitable Liapunov's functions. An exten-
sive study of the several methods of generating these
functions has been made and from these methods the
most promising for use in investigating the stability
properties of the differential equations of motion of a
guided space vehicle have been selected, The deriva-
tion of the methods in this sub-class and the differen-
tial equations to which they are applicable is the sub-
ject of this survey.

Presented at the Conference on Mathematical
Methods of Celestial Mechanics and Astronautics and
Related Questions of Numerical Mathematics, Ober-
wolfach-walke, Germany, March 15-21, 1964,

VARIABLE POROSITY WALLS FOR TRANSONIC
WIND TUNNELS

By

A. Richard Felix and J. W, Davis

Recently, variable porosity walls were instalied
in the transonic test section of the 14 x 14 Inch Tri-
sonic Tunnel at Marshall Space Flight Center, Eval-
uation tests indicated that use of these walls greatly
improve the ability of this facility to produce reason-
ably accurate model pressure distribution data
throughout the critical and difficult Mach number
range from 1.0 to 1,25, The evaluation was accom-
plished by comparing pressure distributions for a 20
degree .cone-cylinder model with interference free
data for the samemodel, The range of porosities uti-
lized is between 0, 5 percent and 5, 4 percent with the
holes being 60 degrees slanted.
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* Presented af thé Twenty-First Semi-Annual Meet-
ing of the Supersonic Tunnel Association, Princeton,
New Jersey, in April 1964,

APOLLO LOGISTIC SUPPORT SYSTEM

By

Herbert Schaefer and Leonard S, Yarbrough

One possible conceptual definition of an early
Apollo Logistics Support System (ALSS) is presented
and various payloads for the System are briefly dis-
cussed, A more detailed discussion of one payload, a
Lunar Mobile Laboratory (MOLAB), is given, includ~
ing a summary discussion of the major sub-systems
and critical features, Some of the considerations for
planning a lunar scientific mission are discussed. A
hypothetical traverse and general operations plan for
the MOLAB are defined in a manner suitable for mis-
sion optimization, once valid design data becomes
available, Some aspects of the MOLAB testing pro-
gram are presented, It is concluded that this system
appears feasible and the problems which presently
confront its design and development do not seem in-
surmountable,

The ideas expressed herein are those of the au-
thors and should not be construed as being official
NASA policy,

Presented at the Tenth Annual Meeting of the
American Astronautical Society on May 7, 1964,

SATURN I FLIGHT TEST EVALUATION

By

Dr, F. A, Speer

Presented in this paper is, in very condensed
form, a representative cross section of the major
Saturn I flight test achievements. The Saturn I flight
test program discussed includes the first five flights,
launched between October 1961, and ‘January 1964,
The overall Saturn I test program is discussed briefly
along with the resources available for flight testing,

The report also contains many illustrations which
are indicative of the type of information which is being
compiled and utilized, from the rough estimate of 550
million bits of information received from these flights,
in designing and building the two major NASA launch
vehicles of the future: the Saturn IB and the Saturn V,

Presented at the First Annual ‘Meeting and Tech-
nical Display (AIAA), Washington, D. C., June 28-
July 2, 1964,

SIMULATION OF THE SATURN V VEHICLE ON THE
ELECTRONIC ANALOG COMPUTER

By

Dieter Teuber

The development of large space vehicles of the
Saturn V type presents numerous problems not en-
countered inthe development of smaller missiles. The
increase of dynamic analysis efforts is apparent if the
effect of atmospheric disturbances on a nonlinear con-
trolled space vehicle is studied. Because of the un-
certainty in predicting the nature of atmospheric dis-
turbances, statistical methods are used. The GPS
high speed repetitive analog computer is suited for the
task to evaluate thousands of solutions for the overall
system performance of the Saturn V.

The systems of differential equations describing
the behavior of the Saturn V are represented. With
the addition of bending and sloshing modes, the prob-
lem is represented on the analog computer by a 12-
degrees-of-freedom simulation. Driving function of
this set of equations is wind magnitudé as function of
the flight time. A reel-to-reel tape recorder is used
for measured wind profiles. In a different approach,
the statistical driving function is generated from a
noise generator and shaping filters based on the spec-
tral characteristics and amplitude distribution of wind.
Exceedances of maximum values for the bending mo-
ment, engine deflection or angle of attack are regis-
tered by the analog computer. Thus, an optimization
by changing control parameters becomes feasible.
Methods of programming the analog computer and
typical transients during powered flight of the Saturn
V are represented.

Presented at the Hermann Oberth Society, Darm-

stadt, Germany, on June 24, 1964.

FAR-FIELD SOUND PROPAGATION AS RELATED
TO SPACE VEHICLE STATIC FIRINGS

By

Orvel E. Smith

As space vehicle boosters become larger in
thrust, the emitted sound energy that is propagated
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through the atmosphere becomes of greater concern
to the organizations performing the static firings due
to disturbance or nuisance to the near-by communi-
ties. Far-field sound intensity levels are calculated
using the inverse square law and theoretical model
based on the acoustical equivalence to Snell's refrac-
tion law, The theoretical model requires a knowledge
of the sound source intensity and the velocity of sound
profile. This model requires accurate measurements
of the vertical structure of virtual temperature, wind
speed and direction from which the velocity of sound
profile is derived. The necessary simplifyingassump-
tions used in deriving the theoretical model will be
discussed. The sound intensity level as derived from
the theoretical model and empirical measurements
from an acoustical horn and the static firings of the
Saturn booster are compared, Practical operational
techniques used in performing atmospheric measure-
ments, atmospheric predictions, and sound intensity
level calculations for the static firing of large boost-
ers are discussed.

Presented at the Fifth AMS Conference on Applied
Meteorology - Atmospheric Problems of Aerospace
Vehicles, Atlantic City, New Jersey, March 2-6, 1964,

AN EVALUATION OF VARIOUS GEOMAGNETIC
FIE LD EQUATIONS

By

Harold C. Euler

The dipole and multipole approximations of the
earth's main magnetic field are evaluated using Jensen
and Whitaker's 568 Gaussian coefficients for Epoch
1955, 0. The total geomagnetic field, which was com-
puted to 16 earth radii for various geographic loca-
tions, is compared to values computed with the in-
verse cube law and to some of the Vanguard III
geomagnetic field observations,

P‘resented at the National Annual Meeting of the

American Geophysical Union, Washington, D. C.,
April 22-25, 1964,

PROPOSED SOLUTION TO THE GEOMAGNETIC
ANOMALIES IN THE IONOSPHERE

By

William T. Roberts.
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In order to determine the driving and controlling
mechanisms which predominate in the ionosphére, a
series of contour maps was drawn from IGY data
taken at stations lying approximately alongthe seventy-
fifth meridian, An attempt was then made to inter-
pret the anomalous behavior of the F, peak of the
ionosphere in the vicinity of the geomagnetic equator,
If one assumes the existence of an equatorial electro-
jet and further assumes that the magnetic field which
is associated with this electrojet is sufficient to per-
turb the earth's main magnetic field, electrons may
be deflected away from the geomagnetic equator,
Furthermore, if the atmosphere tends to expand and
contractdiurnally, ions and electrons may be deflected
into regions at times which could account for the noc-
turnal increase in electron density north and south of
the geomagnetic equator. Special emphasis is placed
upon this nocturnal increase in electron density, and
when its seasonal variation is investigated one finds
that the phenomenon is greatest during and around the
months of equinox and least so during and around the
months of solstice,

Presented at the National Annual Meeting of the
American Geophysical Union, Washington, D. C.,
April 22-25, 1964,

SPHERICAL BALLOON WIND SENSOR BEHAVIOR

By

James R. Scoggins

Ananalysis is presented which shows the response
characteristics of freely rising superpressure spheres
of different configurations, Wind profile data meas-
ured by the superpressure balloon method, the smoke
trail method, the AN/GMD-1 rawinsonde system, and
from low level open air tests were used in the anal-
ysis. Results are reported on data measured at
Huntsville, Alabama, at night during stable conditions
to an altitude of 120 m and at Cape Kennedy toan alti-
tude of 12 km, The results show that (1) the average
drag curve for a freely rising 2-m diameter, smooth
superpressure sphere differs considerably from the
drag curve obtained in wind tunnels using smaller
spheres; the average value of the drag coefficient is
larger over all Reynolds numbers except near the
transition region; (2) the drag coefficient for rough-
ened spheres is nearly independent of the Reynolds
number butdecreases slightly as the Reynolds number
decreases; (3) by the addition of surface roughness
elements the aerodynamically induced horizontal
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motions of the smobt?h spfere are reduced; and (4) the
averafe aerodynamic lift force, which acts primarily
in the horizontal direction and is responsible for the
aerodynamically induced horizontal motions, is neg-
ligible indicating that it does not act in any preferred

direction.
Presentedat the Fifth AMS Conference on Applied

Meteorology - Atmospheric Problems of Aerospace
"Vehicles, Atlantic City, New Jersey, March 2-6, 1964,
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